Bookstore Inventory System
Software Design Document

Version 1.0

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

Revision History

Date Version

Description

Author

17 November, 2010 0.1

Initial Draft

Gerson Recinos
Ho Nam Ho
Jimar Miller
Adam Wurtzel
David Altum
Francisco Diaz

Finan Bariagabr

22 November, 2010 0.2

Initial Draft — Revision

Gerson Recinos
Ho Nam Ho
Jimar Miller
Adam Wurtzel
David Altum
Francisco Diaz

Finan Bariagabr

24 November, 2010 0.3

Assignment — Class Diagram

Gerson Recinos
Ho Nam Ho
Jimar Miller
Adam Wurtzel
David Altum
Francisco Diaz

Finan Bariagabr

04 December, 2010 0.4

Revision of Class Diagram

Gerson Recinos
Ho Nam Ho
Jimar Miller
Adam Wurtzel
David Altum
Francisco Diaz

Finan Bariagabr

06 December, 2010 0.5

Final Revisions

Gerson Recinos
Ho Nam Ho
Jimar Miller

Adam Wourtzel

Page 2 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

David Altum
Francisco Diaz

Finan Bariagabr

07 December, 2010

0.7

Final Draft

Gerson Recinos
Ho Nam Ho
Jimar Miller
Adam Wurtzel
David Altum
Francisco Diaz

Finan Bariagabr

08 December, 2010

1.0

Final Draft — Finalized

Gerson Recinos
Ho Nam Ho
Jimar Miller
Adam Wurtzel
David Altum
Francisco Diaz

Finan Bariagabr

Page 3 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms, and Abbreviations
1.4 References

1.5 Overview

2. Architectural Representation
3. Architectural Goals and Constraints

4, Use-Case View

4.1 User Interfaces
4.2 System Inputs and Outputs
4.3 Use-Case Realizations
4.3.1 Return Rental
4.3.2 Rented Book Returned
4.3.3 Record Transaction into Transaction Database
4.3.4 Update Customer Info
4.3.5 Update Quantity
4.3.6 Delete Book/Category
4.3.7 Add Book/Category
4.3.8 Search Book
4.3.9 Login
4.3.10 Low/Over/Out of Stock Alert

5. Logical View

5.1 Overview

5.2 Architecturally Significant Design Packages
5.2.1 ManagerUl
5.2.2 LoginUlI
5.2.3 User Interface
5.2.4 Timer
5.2.5 Create Report
5.2.6 10
5.2.7 Sales Database
5.2.8 Sale
5.2.9 Database
5.2.10 Book Database
5.2.11 Book
5.2.12 Login
5.2.13 Login Database
5.2.14 Customer
5.2.15 Customer Database

6. Size and Performance

7. Quality

(O IO IO, B, U, B O]

O OV OV N Y

10
11
11
12
13
15
16
17
18

18

19
19
19
20
20
20
21
21
22
22
23
24
24
25
25
25
26

27

27

Page 4 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

Software Design Document

1. Introduction

1.1 Purpose

This document provides a comprehensive architectural overview of the system, using a number of
different architectural views to depict different aspects of the system. It is intended to capture and
convey the significant architectural decisions that have been made on the system.

1.2 Scope

This program will be used as an all-around back-end bookstore inventory system. Some of the key
features of the system are the following. The software will enable the client (business) to have real time
statistics of sales and book inventory, automatically produce End of Day sales reports and End of Day low-
inventory notices (purchase order suggestions).

It will also enable the users (customers) to view the real time inventory and extract book
information, enable users to place orders online and pick up books in-store and access to a personalized
account profile, order history, etc.

Lastly, the program will enable vendors to have access to part of the system — it will allow any
vendor to update book information, add/remove new books to/from the inventory and updated prices.

1.3 Definitions, Acronyms, and Abbreviations

This is a comprehensive list of all terms used in this vision document.

POS (Point of Sale) — An electronic terminal that handles all credit/cash transactions.

Vendor -A company/person who is in the business of selling products and goods to businesses.
Inventory — A detailed list of goods and materials that are in stock.

User — a person who can interact with the software — can be an employee or end user (customer).
Client — The UNLV bookstore.

Book Inventory — The detailed list of books in stock.

Database (DB) — An organized (structured) body of related information.

End of Day Report —A report that is done after business hours are over. Typically, it includes sales and
inventory.

Sales — The overall money transaction during a specified time interval.

Transaction —The exchange of goods or services for legal tender.

1.4 References

None.

1.5 Overview

In the following sections we outline the software product in higher detail. We will start with defining the
key features that will be implemented. Next, we will discuss the constraints that will be imposed upon the
software and the quality ranges, in other words, the robustness, fault tolerance and usability of the
software product amongst other things. In the precedence and priority section we will comment on the
most important functionalities that the software product must have and the integrity of the sales system.

In the following sections will discuss all other product requirements, such as, performance requirements,

platform requirements and environmental requirements. Lastly, we will comment on the documentation
requirements, such as, user manuals, online help & support, installation and packaging.

Page 5 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

2. Architectural Representation

Loglin Ul
o Logal Views

>—}C——
O

OO

User Interface

e Log kAl Viw

X

DB

A
om e Cate VEwy
Customer Custoner Ul User Ul
o Use Case Vkw) o Logkal Viewy o Logleal View
Log In Database Sales Database
S Database
% 4 /"\ @rom log kA View) dhem Log kal Viw) e Log kal VEw)
Manager Manager Ul
o Use Case VW) o Log kal Viws ©
/—\ Book Database Customer Database
= Loglin
U rom Logka VEw e Log kal Vewy aom Log kal Vewy
Vendor Vendor Ul i
Mo Use Case Vkwy o Logkal Viewy g z
i | U Book Customer Sale
o Logkal Vews dom Log kAl Viw)

Employee Employee Ul
iMom Use Case VW) dtrom Logkeal View
o Timer Initialization

. S o Logieal Vkw,
e Log bl Views (rom Logial View

Figure 1 - Architectural Representation

3. Architectural Goals and Constraints

Create Report Printer

ahom Log kal Viewy (hom Use Case VW)

* The Bookstore Inventory System will run on a dedicated platform with access to a SQL database
* The Bookstore Inventory System receives input from the external POS and from UPC Code Scanner.
* The Database save all information that is provided.
e Alltransactions are performed within a timely manner.

Page 6 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

4. Use-Case View

Return Rentsl

- == Time
O

O AutomaticReport BW»OSOOSAuto

Print)

Employee
Manage Customer Info

O

Manage Books (Add/Delete Book)

Cheok Rentsl Status Return Date
Purchase Order Suggestion

<¥include>>

Manual Report (Sales/Inventory
Repor]

Search Books
<<include>»
Printer

List Result Point of Sale Record into Transaction Database

<<includex»

Update Field (Quantity or Price)

Vendor
Customer

Figure 2 - Use Case Diagram

4.1 User Interfaces

User Type
Usemame @ Customer

~) Vendor
Password 3
) Employee

) Manager

Figure 3 - Log In User Interface

Page 7 of 27

Bookstore Inventory System Version:

Software Architecture Document Date: 8 December 2010

[Request Sales Report]
[Request Inventory Report]

l'

Enter Search Tem
Sort By:

@ ISBN

() Author

) Title

() Subject

‘ Log Out

Figure 6 - Customer Ul & View Books Ul

Page 8 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

""" a-) Manage Customer Info & E‘ﬁl-ﬁ_ﬁj

|

Change Name
Manage Customer Info

_—————— =
Figure 7 - Employee Ul & Customer Info Ul

4.2 System Inputs and Outputs

Inputs
* The system accepts input from the POS system.
* The system accepts input from a keyboard & mouse from a terminal that employees/staff/vendors
can access.

Outputs
* The system outputs reports to a printer.
* The system outputs search results, book inventory, etc. to a screen.

4.3 Use-Case Realizations

4.3.1 Return Rental
¢ Brief Description

o In this use case the system updates the customer information in the database after a
customer return a book from the POS

* Actors
POS, Customer Info Database
* Basic Flow of Events:

1. This use case begins with the system receiving input from the POS.
The system receives the customer name and book returned, and then retrieves the customer info
from the customer database.

3. The system verifies if book returned is the same book in record.
The system confirms the customer has returned the book.

5. End of use case.

* Alternate Flow of Events #1: The system does not find the rental book in the

customer info database.

1. This use case begins with the system receiving input from the POS.

Page 9 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

2. The system receives the customer name and book returned, and then retrieves the customer
info from the customer database.

3. The system could not verify the book returned is the same book in record.
The system displays error at the interface to prompt the user.

5. This use case ends.

4.3.2 Rented Book Returned
¢ Brief Description

o In this use case, the system searches the customer database for all rented books that are due
at a specified date. Checks whether the book(s) has been returned.

* Actors
Employee, Customer Info Database, Printer
* Basic Flow of Events:

This use case begins when a staff member requests the report for book rentals due.
2. The system prompts the user for a specified date.

w

The database iterates through the customer info database and looks for a flag that shows a
customer has a rented book.

The system finds the field and checks whether a rented books is due on the provided date.
The system confirms that a book is due on the given date.

The system checks whether the customer has returned the book.

The system verified that the book(s) have been returned.

© N o wv A

End of use case.

¢ Alternate Flow of Events #1: The system find that a rented book has not been

returned.

This use case begins when a staff member requests the report for book rental due.

The system prompts the user for a date.

The system iterates through the customer database and looks for a rented books flag.

The system finds the rented books flag and checks whether the given date matches the due date.
The system confirms that a books is due on the given date.

The system checks whether the book(s) has been returned.

The system is unable to confirm that the book has been returned.

The system prints out the customer information.

0N U R WwN R

This use case ends.

* Alternate Flow of Events #2: The system finds that a customer does not have book
rental due

This use case begins when a staff member request the report for book rentals due.

The staff member enters a specific date to check.

The system iterates through the customer info database and looks for a “Rented Books” flag.
The system does not find the rented books flag for the customer.

vk wnN R

The system continues to the next customer in the database.

Page 10 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

6. This use case end

* Alternate Flow of Events #3: The system finds that a customer has a rented book (or rented books)
in their possession, but they are not due at the specified date.
1. This use case begins when a staff member requests the report for book rentals due.
2. The system prompts the user for a specific date.
3. The system iterates through the customer info database and looks for a flag that show a
customer has a rented book.
The system finds the flag and compares the specified date with the date in the database.
The system determines that they are not the same.
The system moves on to the next customer.

N o v bk

This use case ends.

4.3.3 Record Transaction into Transaction Database
* Brief Description
o In this use case the system records a transaction into the transaction database.

* Actors
POS, Transactions Database

* Basic Flow of Events:

This use case begins with the system receiving input from the POS of a new sale.
The system creates a new entry in the database
The system records the date, time, transaction ID, name of customer, number of items and
purchase amount into the database.
4. End of use case.

* Alternate Flow of Events: The system receives notification of a transaction —
refund
This use case begins when the system receives input from the POS of a refund.
The system creates a new entry in the database.
The system records the date, time, transaction id, name of customer, number of items and
purchase amount to the database.
The system sets a flag to record that the transaction was a refund.
5. End of use case.

4.3.4 Update Customer Info
* Brief Description

o The purpose of this use-case is for the system to update the customer information based on
the input from the POS

* Actors
POS, Customer Info Database

* Basic Flow of Events:

Page 11 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

1. This use case begins with the system receiving input from the POS.
The system receives the customer name and retrieves the customer info from the customer
database. If it is a new customer, then the system adds a new entry to the database.

3. The system records the customer’s name, address and telephone number into the database.
If the customer has rented a book it will also be recorded along with the due date of the book(s)
rented.

5. End of use case

¢ Alternate Flow of Events #1: The system does not find a customer in the customer database - adds a
new entry. This use case begins with the system receiving input from the POS.

This use case begins with the system receiving input from the POS.

2. The system receives the customer name, telephone number, address and searches the customer
database for the given customer.

3. The system does not find the customer.
The system creates a new entry and records the customer details into the database.

5. This use case ends.

¢ Alternate Flow of Events #2: The system finds a match for a customer by name, but other details are
different. Customer responds verifies information. The system updates the customer info.

This use case begins with the system receiving input from the POS.

2. The system receives the customer name, telephone number and address. The system searches the
customer database by name and finds a match. Other details for that customer are different.

3. The system sends a prompt to the POS system to determine if the customer’s details have
changed.

4. If the POS returns yes, then the details are updated.

5. The use-case ends

¢ Alternate Flow of Events #3: The system finds a match for a customer by name, but other details are
different. Customer is unable to verify the information. New entry is added to the database.

1. This use case begins with the system receiving input from the POS.

2. The system receives the customer name, telephone number and address. The system searches the
customer database by name and finds a match. Other details for that customer are different.

3. The system sends a prompt to the POS system to determine if the customer’s details have
changed.
The POS returns no, a new entry is added into the customer info database.

5. This use case ends.

4.3.5 Update Quantity
¢ Brief Description

o The purpose of this use-case is for the system to increase or decrease the number of books in
the book database

¢ Actors
POS, Book Inventory Database

* Basic Flow of Events:

Page 12 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010
1. This use case begins with the system receiving input from the POS.
2. The system receives the ISBN number of the book sold and a code for refund or sale.
3. The system searches the book database (by ISBN) for the sold book.
4. |If the code indicates that the book was sold it decrements the book quantity. If the code indicates

a refund, it will increment the book count by one.
End of use case.

¢ Alternate Flow of Events #1: Attempts to decrease the number of books, when quantity is zero.

oA wWN e

This use case begins with the system receiving input from the POS.

The system receives the ISBN number of the book sold and a code for refund or sale.
The system searches the book database for the specified book.

The quantity field is decremented and the book count becomes -1.

The system then prompts staff that the quantity is below 0.

This use case ends

4.3.6 Delete Book/Category
* Brief Description

This use-case describes the process by which the system deletes a book record in the database.
This use-case also describes the process if a manager wants to delete a category of books.

* Actors

Managers, Employees

* Basic Flow of Events: Delete book

1.

2
3
4.
5
6
7

The use-case begins when a manager or employee utilizes the search function.

. The employee or manager employs the search with any of the search choices listed by the system.

. The employee or manager activates the search as long as they selected a search choice.

The system locates and highlights the desired book.

. The employee or manager deletes the book by clicking delete on the system menu.
. The system displays a message to the employee or manager to confirm the deletion transaction

. The use-case ends.

¢ Alternate Flow of Events #1: Delete book or category when there is nothing to delete

1.
2
3.
4

5.
6.

The use-case begins when a manager or employee utilizes the search function.
The employee or manager employs the search with any of the search choices listed by the system.
The employee or manager activates the search as long as they selected a search choice.

The system displays an error message to the employee or manager that the book or category
does not exist.

The employee or manager acknowledges this message.

The use-case ends.

¢ Alternate Flow of Events #2: Delete Category

This flow of events describes the steps if a manager wants to delete a category

Page 13 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010
1. The use-case begins when a manager wants to delete a book category.
2. The manager navigates to the category location that is to be deleted.
3. The manager highlights/selects a book category.
4. The manager selects delete on the system menu.
5. The system displays a message to the manager to confirm the deletion transaction.
6. The manager either confirms or denies the transaction.
7. The use-case ends.

¢ Alternate Flow of Events #3: Delete Category with books in category
This flow of events describes the steps if a manager wants to delete a category that contains books
1. The use-case begins when a manager wants to delete a book category.

The manager highlights/selects a book category.

The manager selects delete on the system menu.

The system counts how many books reside in the category that the manager wants to delete.

The system displays a message of how many books are in the category.

The manager must acknowledge and confirm the amount of books in the category.

The system displays a message to the manager to confirm the deletion transaction.

The manager either confirms or denies the transaction.

© © N o U~ w N

The use-case ends.

* Alternate Flow of Events #4: Delete Category with books and other categories in a
category

This flow of events describes the steps if a manager wants to delete a category that contains books and
other categories

The use-case begins when a manager wants to delete a book category.
The manager highlights/selects a book category.
The manager selects delete on the system menu.

The system detects if categories reside in the category that the manager wants to delete.

LA R

The system displays a message that informs the manager that other book categories exist in the
category the manager wants to delete.

o

The manager must acknowledge this message from the system.

7. The system displays "Please try again" message when the other categories move to a different
location or have been deleted.

8. The manager acknowledges the message.

9. The use-case ends.

Page 14 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

4.3.7 Add Book/Category

* Brief Description

o The purpose of the add books/categories . This ensures that employees sell books that
customers need for their classes. The system grants extra privileges to managers where they
can create categories for any book in the database. This use-case describes the process of
adding books or categories.

* Actors

Managers, Employees

¢ Basic Flow of Events: Add book

1
2
3
4.
5
6

The use-case begins when either a manager or employee choose to add a book.
The employee or manager scan the ISBN.

The system fetches all pertinent information to populate our database.

The system inserts the information from the Library of Congress into the database.
The system has added the scanned book into the database.

The use-case ends.

¢ Alternate Flow of Events #1: Add category

This flow of events describes the steps taken if a manager wants to add a category:

N o v &~ w N

The use-case begins when a manager chooses to add a book category.

The manager navigates to the location where the category is to be added.

The system displays a dialog box for the new category.

The manager types the book category name.

The system verifies that a duplicate category does not exist in the destined location.
The system informs the manager that the addition of a book category succeeded.

The use-case ends.

¢ Alternate Flow of Events #2: Add book, but ISBN is not found

This flow of events describes the steps taken if an employee or manager add a book, when the ISBN is
not found from the Library of Congress:

1.
2.
3.

The use-case begins when an employee or manager chooses to add a book.
The employee or manager scan the ISBN.

The system fails to locate the ISBN from the Library of Congress.

Page 15 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

4. The system informs the employee or manager that the ISBN was not found and did not add this
book to the database.

The employee or manager acknowledges this message.
The employee or manager gathers all required information for the database from the book.
The employee or manager inputs all required data into the database.

The system informs the employee or manager that the book was added to the database.

L o N o U

The employee or manager acknowledges the message.

10. The use-case ends

4.3.8 Search Book
* Brief Description

o This use-case describes the process by which the system look thru the book database and find
a list of books that fulfilled the parameters given. (Authors, ISBN, subjects, etc...)

¢ Actors

Book database, customer, managers, employee, vendor, website
* Dependencies

List Result.

¢ Basic Flow of Events: Search for book/s, found the book/s

=

The use-case begins when an actor requests for a search of book(s).
2. The use-case prompts the user for a search parameter
i. Search by ISBN
ii. Search by Authors
iii. Search by publishers
iv. Search by Subjects
V. Search by Etc...
3. The use-case prompts the user for appropriate information based on the choice of method
(author name, department name and/or course number, etc...)
4. The user presses “search book” on screen.
i. The use-case processes the provided information for a search.
ii. The use-case displays a summary of requested parameters for finding the book/s
5. The use-case generates and returns the list from the found books using “List Result” use-case.
The use-case ends.

o

¢ Alternate Flow of Events #1: Search for book/s, did not find specific book/s

This flow of events describes the process of making changes to previous selection. It follows the basic
flow of events up to step three (3)

1. The use-case begins when an actor requests for a search of book(s).
2. The use-case prompts the user for a search parameter;
i. Search by ISBN
ii. Search by Authors
iii. Search by publishers
iv. Search by Subjects
V. Search by Etc...

Page 16 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

3. The use-case prompts the user for appropriate information based on the choice of method
(author name, department name and/or course number, etc...)
4. The use-case attempts to process the provided information
5. The use-case displays an appropriate message indicating the provided information is incorrect and
what information is required to continue with the search.
6. The use-case restarts the process from step three;
o The use-case can restart from step one if the user wishes to change the search parameter

7. The use-case ends.

4.3.9 Login
¢ Brief Description

o This use-case describes the process of verifying identity to access a certain feature. In this
case, it is being used to limit access of managing bookstore book prices to only managers
and vendor book prices to only vendors.

* Actors
Managers, Vendors, Employees

* Dependencies

Add book, Delete book, Update quantity, update price, sales/refund, request sales report, request
inventory report (Pretty much everything that request you to login before hand)

* Basic Flow of Events: Login, No error

1. This use-case begins when an actor attempts to manage book prices.
The use-case prompts the user for a login and password information.
The use-case processes this information after the user presses "enter".
The use-case verifies the login information provided is correct.

vk wN

The use-case gives access either to the bookstore prices or the vendor prices depending on the
login information.
6. The use-case ends.

* Alternate Flow of Events #1: Login, incorrect password/username

This flow of events describes the process of making changes to previous
selection. It follows the basic flow of events up to step three (3)

This use-case begins when an actor attempts to manage book prices.

The use-case prompts the user for a login and password information.

The use-case processes this information after the user presses "enter".

The use-case attempts to verify the provided login information is correct.

The use-case displays an appropriate message indicating the provided information is incorrect
and how many attempts left.

The use-case restarts the process from step one if the number of attempts left is not zero.
The use-case locks access to this feature if number of tries left is zero.

8. The use-case ends.

vk wnNR

No

Page 17 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010

4.3.10 Low/Over/Out of Stock Alert
¢ Brief Description

o This use-case describes the how alerts are handled when book-store items are in a low stock,
out of stock and over stock alert state.

* Actors

Book-store System

* Dependencies

Daily Report

¢ Basic Flow of Events: Low/Over/Out of Stock Alert occurs

1.

4.

The use-case begins automatically at the end of the day when the Book-store system checks the
book database searching for three alert types which are low stock, out of stock, or overstock books.

. For each low/out of/overstock book found the system writes into the daily report the books

information such as book name, ISBN, alert type, and quantity.

. The system creates an alert message that will be seen on next Manager Login that the daily report

has new alerts.

The use-case ends.

¢ Alternate Flow of Events #1: Low/Over/Out of Stock Alert does not occur.

1.

The use-case begins automatically at the end of the day when the Book-store system checks the
book database searching for three alert types which are low stock, out of stock, or overstock
books.

No alerts are found within the book database.
The system writes into the daily report that no alerts were found.

The use-case ends.

5. Logical View

Page 18 of 27

Bookstore Inventory System

Version:

1.0

Software Architecture Document

Date: 8 December 2010

5.1 Overview

vendor Ul Employee Ul Timer
Log In
) ¤tTime
:viewﬂooks() :Vr'n?égﬁg'éﬁ%mo Customer Ul Suseriame
manag eBooks: ¥ i (4
) 0 ¥manageCustomerinfod i ‘ch_eclemeo & userType
SreturnRental(iewBooks(printReport) F Log In Database
- plastLogln
Py s &loginarray
/
- Manager Ul QgetUserType)
\ // QopenLoginUlg $sort J_
A rg . QgetUserName)
- Qi ke o
\] VP A/ inqeawngggBSo%kso QgetPassword(5,
User Ul 4________———)"_' QmanageCustomerinfo) SupdateLastogng Database
@US?YT‘IPEO ‘relurnRentalO @ Si Customer Database
QprintReport) @m_axs ze Bcust A
Slogout) TTOGEED minSize customerarray
& defaultSortType
&salesamay I <H ®sortg
\ Login UI Qadd(QupdateCustomerinfog)
User Interface N Qsort) :deleteo QgetCustomerinfo()
erify() search()
&previousiindow . :chuuseUserT\/peo Qsort))
LS openvendorUI)
*Sﬂﬂvv\crngzv\:% QapenEmploye eUI) ﬁ%
open CustomerUI() Sale
QopenhtanagerUl() o Btpe Book Database
hufter &amount &hookarray Customer
&hardwarelDAay & datetime &name
Create Report - &customerName Ssort) &
S outOTStockList Sprint) &employeeName { &cenumber
& lowstockList SreadSean(&cesecurity
overStockList getEmplayeeName y
& SreadPos(SgetEmployeeName((&rentalFlag
&reporFile SgetCustomerName((&emailaddress
SgetTypeofsale) & wrnber
SgetBookinventory) Sgetamount o
QcheckBookinventory() SrecordDateTime() pisbn QgetCustomerName(
:mgenBookAleno & subject QgetCustomerAddress(
printBookAlerts() Initalzan & QgetCeNumber
biile .
—— &edition getCcSecurity)
—————1 & author QgetEmailAddress)
& publisher QgetPhoneNumber(
Gprice QraiseRentalFlag)
&usedprice QlowerRentalFlag)
&quantity

Figure 8 - System Class Diagram

5.2 Architecturally Significant Design Packages

521 ManagerUI

* Brief Description

Boundary — Manager Ul provides an interface for a manager to interact with the system.

* Methods

Access Return Name Description

Public Void viewBooks() This method is the user interface that comes up
when a manager needs to view books

Public Void manageBooks() This method is the user interface that comes up
when a manager needs to manage books

Public Void manageCustomerinfo() This method is the user interface that comes up
when a manager needs to manage a customer
information

Public Integer returnRental() This method is the user interface that comes up
when a manager needs to update a customer’s
book rental status

Public Void printReport() This method is the user interface that comes up
when a manager needs to request a report to be
printed

Page 19 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

522 LoginUI

¢ Brief Description

Boundary — Login Ul provides an interface for every user to log in to the system.

¢ Methods

Access Return Name Description

Private Void submit() This method verifies the login information

Private Void chooseUserType() This method is used to determine what type of
user needs to login

Public Void openVendor() This method is the user interface that comes up
when a vendor needs to login

Public Void openEmployeeUl() This method is the user interface that comes up
when an employee needs to login

Public Void openCustomerUl() This method is the user interface that comes up
when a customer needs to login

Public Void openManagerUl() This method is the user interface that comes up
when a manager needs to login

5.2.3 User Interface

¢ Brief Description

Control — This class provides functionality to its subclasses to open, close and remember the
previous window.

¢ Methods

Access Return Name Description

Public Void previousWindow() This attribute holds the previous window that
was opened before the current one

Public Void openWindow() This method is used open a new user interface
window

Public Void closeWindow() This method is used close a currently opened
user interface window

524 Timer

¢ Brief Description

Control — This class generates reports automatically.

e Attributes

Type

Access

Name

Description

Integer

Private

Timer

An internal timer that holds the current time in
seconds.

Page 20 of 27

Bookstore Inventory System Version: 1.0

Software Architecture Document Date: 8 December 2010
¢ Methods
Access Return Name Description
Private Boolean CheckTime() A timer event that activates periodically that

checks if the current time matches the time to
create a daily report.

Private Void StartCreateReport() Once the timer event is true this method wakes
up the processes in the class CreateReport()

525 Create Report

¢ Brief Description

Control — This class generates automatic reports on a daily or specified basis. Its output is passed to
I/0 for printing.

e Attributes

Type Access Name Description

BookList Private | OutOfStockList List of Books which are out of stock

BookList Private | LowStockList List of Books which are over stocked

BookList Private | OverStockList List of Books which are low stocked

File Private | ReportFile A file which contains all the alerts that is used to
send over to 10

¢ Methods
Access Return Name Description
Private List array | getBooklnventory() A timer event that activates periodically that

checks if the current time matches the time to
create a daily report.

Private void checkBookInventory() Checks each book for low stock, out of stock, or
over stock alerts. If a book is in a alert state
checkBookinventory() calls insertBookAlert().

Private Void insertBookAlert() Inserts a book into one of three lists : Low-stock
books, Out-of Stock books and Over-Stocked
books.

Private Boolean PrintBookAlerts() Creates a file with the three alerts lists and

sends it over to the 10 device for printing.

526 10

¢ Brief Description

Control — This class provides the system with the functionality of printing reports and showing data
to a screen.

e Attributes

Type Access Name Description

Page 21 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

Void Private Print Holds the files sent for printing
Buffer
¢ Methods
Access Return Name Description
Private Boolean PrintToScreen() Prints the file on to screen specified in the
parameter
Private Void PrintFile() Prints the file specified in the parameter

5.2.7 Sales Database

* Brief Description

Entity - Class that contains all necessary attributes and methods associated with bookstores sales.

e Attributes

Type Access Name Description

sales Public salesArray the array that contains all records of type sales
¢ Methods

Access Return Name Description

Public Void sort() inherits from parent class 'database’ but focuses

the sort based off any of the fields associated
with of type 'sale’

5.2.8 Sale

* Brief Description

Entity - Class that stores all information associated with a bookstore transaction

e Attributes

Type Access Name Description

Boolean | Private Type a boolean array where the value corresponds to

array either a sale or refund

float Private Amount contains the total amount of the purchase

String Private Datatime contains the date and time of when the
transaction took place

String Private Customer name contains the first and last name of a customer
who made the purchase

String Private Employee name contains the first and last name of the
employee who conducted the purchase
Methods: NA

¢ Methods

Page 22 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

Access Return Name Description

Public Void getEmployeeName() This method gets the employee’s name handling
the sale transaction from POS

Public Void getCustomerName() This method gets the purchasing customer’s
name in the sale transaction from POS

Public Void getType() This method gets the type of transaction taking
place from POS

Public Void getAmount() This method gets the total amount charged in
that transaction from POS

Private void recordDateTime() This method records the date and time of the
transaction from the system timer

529 Database

¢ Brief Description

Entity - The generic class for all databases. Contains all attributes and methods that every database
shares or inherits.

e Attributes

Type

Access

Name

Description

Integer

Public

Max size

An integer value that stores the current number
of entries within the database.

Integer

Public

Min size

An integer value that stores the minimum
number of entries possible within the
database(normally set to 0, but any number of 0
denotes default database entries that are not
counted).

string

Public

Default sort type

A string value that stores the current sort type
that the database is sorted by.

* Methods

Access

Return

Name

Description

Public

Void

Add()

A void method that takes in an entry and inserts
it into the database in the appropriate index
based on the current default sort type.

Public

Void

Delete()

A void method that takes in a value and deletes
the appropriate entry with that value based on
the current default sort type.

Public

Void

Search()

An integer method that returns the index of the
entry that contains the string value given as a
parameter based on the current default sort
type.

Public

void

Sort()

A void method that performs a Quick Sort based
on the parameter given, which is the sort type
performed. The Sort() function then sets the
default sort type to the type of sort that was just
performed.

Page 23 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

5.2.10 Book Database

¢ Brief Description

Entity - A class for the creation of a database that stores values of type “Book.”

e Attributes

Type Access Name Description
book Public bookArray The actual array that contains values of type
“Book.”
* Methods
Access Return Name Description
Public void sort() Inherits from the superclass “Database.” Only

allows for the array to be sorted based on the
appropriate field types that “Books” can have.

5.2.11 Book

¢ Brief Description

Entity - A class for storing all the pertinent information contained within each unique book.

e Attributes

Type Access Name Description

Int Private ISBN The ISBN of the book (constant).

String Private Subject Contains information about what class this
book is used in (for example, CS 472, would
be stored for any textbook used in the class
CS 472) (variable).

String Private Title The full title of the book (constant).

Float Private Edition The edition of the book (constant).

String Private Author The author of the book (constant).

String Private Publisher The publisher of the book (constant).

Float Private Price The current price of the book (variable).

Float Private UsedPrice The current price for a used version of this book
(variable).

Int Private Quantity The current number of this book in stock
(variable).

Page 24 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

5.2.12 Login

¢ Brief Description

Control — This class provides a user interface for users to log in to the system.

e Attributes

Type Access Name Description

String Private userName This attribute is the login name of the user

String Private Password This attribute is the login password of the user

String Private userType This attribute is the type of the user

int Private lastLogin This attribute stores the last recorded login time
and date

¢ Methods

Access Return Name Description

Public void getUserType() This method gets the type of user from user
through a user interface window

Public void openlLoginUI() This method opens the appropriate loginUlI

Public void getUserName() This method gets the user login name through
the login Ul

Public void getUserPassword() This method gets the user password through the
login Ul

Public void updatelastLogin() This method updates the user’s last login record
with the current login.

5.2.13 Login Database

¢ Brief Description

Entity — This class stores all username and passwords for users that have access to the system.

e Attributes

Type Access Name Description
String Public logInArray An array of information required for login
¢ Methods
Access Return Name Description
Public void Sort() This method can sort all the usernames and

passwords in specific parameters such as Type,
Last name, privilege,

5.2.14 Customer

¢ Brief Description

Page 25 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

Control — This class provides functionality to the system to store customer information in the

database.

e Attributes

Type Access Name Description

String Private Name This attribute is the customer 's name

String Private Address This attribute is the customer's address

String Private Ccnumber This attribute is the customer 's credit card
number

String Private Ccsecruity This attribute is the customer 's credit card
security code

Boolean | Private RentalFlag This attribute is the a flag that indicates if the

customer has a rental book or not

String Private

Emailaddress

This attribute is the customer 's email address

string Private phonenumber This attribute is the customer 's phone number
¢ Methods

Access Return Name Description

Public Void getName() This method gets the name of the customer

Public Void getAddress() This method gets the customer’s address

Public Void getCCNumber() This method gets the customer’s credit card
number

Public Void getCCSecurity() This method gets the customer’s credit card
security code

Public Void getEmailAddress() This method gets the customer’s email address

Public Void getPhoneNumber() This method gets the customer’s phone number

Public Void raiseRentalFlag() This method raises the rental flag when the
customer rents a book

Public Void lowerRentalFlag() This method lowers the rental flag when the
customer returns a rented book

5.2.15 Customer Database

¢ Brief Description

Entity — This class stores all the information from each customer.

e Attributes

Type Access

Name

Description

string Public

customerArray

This array holds all the customer information.

Page 26 of 27

Bookstore Inventory System

Version: 1.0

Software Architecture Document

Date: 8 December 2010

¢ Methods

Access Return Name Description

Public Void Sort() This method can sort all the username and
password in specific parameters such as Type,
Last name, privilege,

Public Void getCustomer() This method gets a new customer’s information
and stores it in the customer database

Public Void updateCustomer() This method updates an existing customer’s
information

6. Risk Rank of Classes

Login Database

High

Sales Database

Customer Database

Book Database

User Ul

Log In

Create Report

Low

7. Size and Performance

* The Bookstore Inventory System must perform all functions with minimal time delays.
* The system must also accurately save all information transactions.

8. Quality

¢ In order to maintain the highest degree of system integrity our system will ensure that all information
transactions are saved.

e Backup of all databases will occur on a daily basis during minimum activity hours.

* The system will allow users to print out receipts and transaction history for a specified time period.

Page 27 of 27

