Discrete Applied Mathematics 10 (1985) 117-124 117
North-Holland

MINIMUM COST FLOW ALGORITHMS FOR
SERIES-PARALLEL NETWORKS

Wolfgang W. BEIN, Peter BRUCKER

Fachbereich Mathematik/Informatik, Universitit Osnabriick, Postfach 4469, 4500 Osnabriick,
West Germany

Arie TAMIR
Department of Statistics, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

Received 15 January 1984

It is shown that an acyclic multigraph with a single source and a single sink is series-parallel
if and only if for arbitrary linear cost functions and arbitrary capacities the corresponding mini-
mum cost flow problem can be solved by a greedy algorithm. Furthermore, for networks of this
type with m edges and n vertices, two O(mn + m log m)-algorithms are presented. One of them
is based on the greedy scheme.

1. Introduction

A directed (multi) graph G is given by a finite set E of edges, a finite set V of
vertices and two mappings A, ¢ : E— V which associate with each edge e € E the head
h(e) and the fail t(e) of e. h(e) is called a successor of t(e) and t(e) is called a pre-
decessor of h(e). A vertex without predecessors is called a source; a vertex without
successors is called a sink. Two edges e and e’ are called parallel if A(e) =h(e’), and
t(e)=t(e’). For each vertex veV we denote the set of edges e with 7(e)=v by
OUT(v) and with A(e) = v by IN(v). OUT(v) is the set of outgoing edges with respect
to v, and IN(v) is the set of ingoing edges with respect to v. A (two terminal) series-
parallel graph is a multigraph with exactly one source and one sink, which is defined
recursively as follows:

(i) A single edge e together with z(e) and h(e) is a series-parallel graph.

(ii) If S, and S, are series-parallel graphs, so is the multigraph obtained by either
of the following operations:

(@) Parallel composition: identify the source of S; with the source of S, and
the sink of S, with the sink of S,.
(b) Series composition: identify the sink of S; with the source of S,.

Consider for a series-parallel graph S=(E, V, A, t) the following parametric net-
work flow problem P(g) in which g is some nonnegative real parameter, a, (e€ E)
are arbitrary real numbers and ¢, are nonnegative integers for e € E. Furthermore,
the source and the sink of S are denoted by s and ¢ respectively.

0166-218X/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

118 W.W. Bein et al.

P(q) Minimize ZE a,x,,)
subject to
Y x.= X X, veEV\{st}, (2)
eecIN(v) e€OUT(v)
Y x.= Y x=gq 3)
e OUT(s) eeIN(f)
O=sx,=¢c, eek. “4)

A vector x=(x,) is called a feasible solution for P(q) if x satisfies the restrictions
(2)-(4). The maximal integer value ¢ for which P(g) has a feasible solution is called
maximal flow value, and denoted by g,,,,.

In Section 2 we will show that an acyclic multigraph with a single source and a
single sink is series-parallel if and only if for arbitrary linear cost functions {a,},
eeE and arbitrary capacities, {c,}, ecE, the corresponding minimal cost flow
problem P(g), for 0<g=<g,,y, is solvable by a greedy algorithm.

Thus the greedy scheme is valid for series-parallel networks. Let |V |=nand |E| =
m. An implementation of this greedy scheme in an overall time of O(mn + m log m)
as well as a second algorithm with the same complexity are presented in Section 3.

The following special case of the above problem has been dealt with by Brucker
[2].

A multigraph G without parallel edges is called a free if G has exactly one sink
¢ and each vertex v#¢ has exactly one successor. A tree may be transformed into
a series-parallel graph by adding one source s and edges e with #(¢) =s and h(e)=v
for all leaves (i.e. vertices without predecessors) v of the tree. We also call series-
parallel graphs constructed in such a way trees.

Brucker [2] has shown that if G is a tree and ¢ is a fixed integer, problem P(q)
can be solved in O(m log m) steps. Special tree problems with convex cost functions
have been discussed by Brucker [1] and Tamir [3], [4].

2. Minimum cost flows in series-parallel graphs

The construction process of series-parallel graphs along their recursive definition
may be represented by binary trees which are called decomposition trees. In a
decomposition tree sets of parallel edges of the graph are represented by the leaves
of the tree. Vertices of the decomposition tree which are not leaves are labelled by
S indicating a series composition, or P indicating parallel composition. In Fig. 1 an
example of a series-parallel graph together with its composition tree is shown. Note
that the sons of a vertex labeled with S are ordered.

Valdes, Tarjan and Lawler [5] gave an algorithm to check whether a given multi-
graph is series-parallel and to construct its decomposition tree in that case. The
complexity of this algorithm is O(JE).

Minimum cost flow algorithms 119

{b.d {d.e}

Fig. 1.

To solve problem P(g) we assume that the series parallel graph S is given by a
decomposition tree T with vertices 1,2, ...,r. Furthermore, let the vertices in T be
enumerated topologically, i.e. we have i<j if j is a father of i. r is the root of
the tree. The subtree rooted in / is denoted by 7;. 7T; corresponds to a series-parallel
submultigraph S; of S.

The solution of the parametric problem P(q) may be described by the maximal
flow value g,,,, and the optimal value f(g) of the objective function of P(g) for
each g, 0=g=q ..

f is a piecewise linear convex function defined on the interval [0, gn.] with
J(0)=0. A complete description of f is given by a partition of [0, ¢na,] into con-
secutive subintervals I; (j=1,...,7) of length /;, where the slope u; of f does not
change (see Fig. 2). Note that the sequence u;, 4, ..., 4, is nondecreasing.

Furthermore, to each interval [;, there corresponds a path p; from s to ¢ which
has the property that the cost of one unit of flow along this path is equal to u;.
Thus, a complete solution of P(q) may be characterized by

qmax and (ljy ujfpj) fOrjzl,...,f. (6)
We also call (6) a solution of P(g). Such a solution may be constructed using the

following greedy algorithm:

Greedy Algorithm
1. For all ec £ do x,:=0; j:=0;
2. While there exists a path connecting s and ¢ do

Begin
3. Jji=j+1
4. Find a minimal cost path p; and the corresponding u;-value;

5. l;:=min{c, |e€p;};

120 W.W. Bein et al.

tra
h] |2 1 | !
uy ’
Ha
y DS Y
Fig. 2.
6. For all ee p; do
Begin
7. c,i=C—1;;
8. If ¢,=0 then E:=E\ {e}
End
End

Notice that the Greedy Algorithm is an augmenting path algorithm which does
not use backward arcs.

Next, we will show that this algorithm solves P(g) for all 0<g<g,,,, and for
arbitrary data if and only if the network is series-parallel.

Theorem. Let G be a directed acyclic multigraph with a single source s and a
single sink t. G is a (two terminal) series-parallel graph if and only if for every set
of costs {a,}, e E, and every set of nonnegative capacities {c,}, e€ E, the above
Greedy Algorithm solves the corresponding minimal cost flow problem P(q), for
0= q = qmax-

The proof of the theorem will use the following notation and definitions.

A directed path in G from vertex x to vertex y will be denoted by P(x, »). x and
y will then be called its end vertices.

We will say that two paths P(x, ¥) and P(u, v) are vertex disjoint if the fact that
a vertex w is in both paths implies that w is an end vertex of P(x, y) and P(u, v).

Proof. Suppose first that G is series-parallel. The following result justifies the
validity of the Greedy Algorithm:

Let g, 0<q =g, and let P(s,t) be a minimum cost path connecting the source
s and the sink 7. Then there exists x*, an optimal solution to problem P(g), with

Minimum cost flow algorithms 121

x)= min<q, min {Ce}> for each edge ee P(s, 7).
ee P(s, 1)

We prove the result by induction on the number of edges in G. Assume that G
is obtained by a series composition of the series parallel graphs G; and G,, where
s;, 1; are the terminals of G;, i=1,2 and ¢, =s,. Let P;(s,) denote the restriction of
P(s,f) to G;, i=1,2. Consider the problem P(q) defined on G;, i=1,2. By the
induction hypothesis there exists an optimal solution x', i=1,2, to this problem
such that x!=min(g, min,,,,, {c.}). Since (x',x?) optimally solves P(q) on G, the
proof for the series composition is complete.

Suppose now that G is obtained by a parallel composition of G, and G,. With-
out loss of generality assume that P(s,¢) is contained in G,. Thus, if g, units are
flowing through G, in an optimal solution to P(g) on G, we may assume without
loss of generality that ¢;=min(g, min,_p, {c.}). By the induction hypothesis on
G, there exists an optimal solution to P(g) on G such that the flow on cach edge
ec P(s, 1) is at least min(g, min, . p) {€c})-

For the second part of the theorem, let G be a directed acyclic multigraph with
a single source and a single sink. Assume that the Greedy Algorithm is valid for
P(q), 0=g=<gq,,.,. Suppose that G is not series parallel. It then follows from [5]
that there exist in G four distinct vertices s’, ¢/, u, v and five (pairwise) vertex disjoint
directed paths, P(s’,u), P(s,v), P(u,v), P(u,t’) and P(v,¢"). Furthermore if s'#s
(i.e., s’ is not a source), the properties of G imply the existence of a path P(s’,s),
such that P(s’,s) and the above five paths are (pairwise) vertex disjoint. Similarly
if t'#1¢ there exist a path P(¢’,¢) such that the seven paths P(s,s"), P(s’,u), P(s’,v),
P(u,v), P(u,t"), P(v,t") and P(¢',t) are pairwise vertex disjoint (see Fig. 3).

v

Fig. 3.

Next we define the capacities {c.} and the costs {a,}.

2 if eis on P(s,s") or on P(t', 1),
1 if eis on P(s’,u) or on P(s’,v) or on

Ce = P(u,v) or on P(u,t") or on P(u,t"),
0 otherwise.
0 if eis on P(s’,u) or on P(u,v) or on P(v, t'),
a, =
¢ otherwise.

122 W.W. Bein et al.

If we set ¢ =2, the optimum solution to P(2) does not use the unique minimum
cost path connecting s and ¢. Thus, the Greedy Algorithm does not solve P(2) and
the proof is complete.

In the next section we will show that for graphs with m edges and n vertices the
Greedy Algorithm can be implemented in an overall time of O(mn+ m log m).

3. Implementation. A bottom-up procedure

In this section we first discuss the implementation of step 4 of the Greedy
Algorithm.

The minimal cost path p from s to ¢ and the corresponding u-value can be calcu-
lated along the decomposition tree of the series-parallel network using the following
algorithm.

Algorithm 1
1. For /:=1 until r do

2. If i is a leaf then
3. INITIALIZE(V)
else

Begin
4. Find the left son j and right son k of i;
5. If i has label P then

MERGE(J, k; i)

else
6. ADD(j, k;i)

End

Notice that Algorithm 1 proceeds from the leaves of the decomposition tree to
the root because the nodes of this tree are enumerated topologically. The procedure
INITIALIZE (i) chooses among the set £(i) of parallel edges e associated with leaf
i one, say e, with the smallest a.-value and sets p; :=& u; :=a,. If E(i)=0, then it
sets p; =0, u; 1= 00,

The procedures MERGE(, k; /) and ADD(/, k;i) are defined as follows.

MERGE(j, k; i)
If u;<uy then
Begin v, :=u;; p;:=p; End
clse
Begin v, :=uy; p; :=p, End

Minimum cost flow algorithms 123

ADD(j, k; 1)
u,' = Uj + uk;
Pi=D;° Pk

In the second procedure p; © py, denotes the concatenation of p; and p;. p; op=9
if p;=0 or p,=0. Notice that if Algorithm 1 calculates p,=#, then there exists no
path connecting s and 7.

For series-parallel graphs without parallel edges it can be shown by induction that
the number of edges is at most 2n — 3. Thus the decomposition tree has O(n) vertices
and, if we do not count the effort involved in step 3, the complexity of Algorithm
1 is O(n).

Because of step 8 the number of iterations of the while loop of the Greedy
Algorithm is O(m). Thus if we do not count the calls of all INITIAL-procedures,
the overall complexity of the Greedy Algorithm is O(mn). For an efficient imple-
mentation of the INITIAL procedures we use heaps to represent the sets of parallel
edges E(i). Then, a minimal cost edge can be found in constant time. Furthermore,
if in step 8 of the Greedy Algorithm an edge is eliminated, the corresponding heap
can be updated in O(log m) steps. Thus the overall complexity of the Greedy
Algorithm is O(mn + m log m).

We will now discuss an algorithm which solves P(g) for all 0=<g=<gq.,,, and has
the same complexity as the Greedy Algorithm, but some computational advantages.
Let i be a vertex of the decomposition tree and let S; be the series parallel graph
associated with 7, the subtree rooted at i{. Now let

FULRT LY N PN
(i)

1)

%

with ul" < ul’ <. =u

be a solution of the corresponding subproblem P(q).

The idea of the algorithm is to solve the problems P*)(g) for i = 1,..., r recursively
using Algorithm 1. All we have to do is to choose an appropriate data structure and
replace the procedures INITIALIZE (i), MERGE(J, k; i), and ADD(/, k;i) by pro-
cedures INITIALIZE1(;), MERGEI1(}, k;i) and ADDI(}, k;i) respectively. These
new procedures may be described as follows:

(1) INITIALIZEL(/) creates a queue Q; of data elements (lé”, ué”, pe(i)), ec E(i)
with ['=c,; ul"=a,, and p’=e, sorted by ul-values. Furthermore g s set
equal to ¥, .q Co-

(i) MERGEI(/, k;i) merges the queues Q; and Q, into a new (sorted) queue Q;

; ’ X
and Sets i), = dulay + dinas-

(iii) ADDI1(J, k;i) is more complicated. A detailed description is given below. In
this description FIRST(Q), MAKENULL(Q), INSERT((/, u, p); O), and DELETE(Q)

are the usual operations on the queue Q.

ADDI(, k;)
. o
L gy :=min{gin, Gomt;

124 W.W. Bein et al.

2.
3.
4.

W

©® N o

10.

11.
12.
13.
14.

15.

16.

17.
18.

MAKENULL(Q;);
(j,u;, p;) :=FIRST(Q)); Uy, g, Pi) := FIRST(Qy);
While Q; #0 and Q,+¢ do
Begin
If /;<l; then
Begin
INSERT((/;, u; + uy, p; © pi); 9i);
L=l 1
DELETE(Q));
(;,u;, p;) == FIRST(Q;)
End;
If [, </; then
Begin
INSERT (i, 4 + ttg, p; ©)i @)
li=l—1g
DELETE(Q,);
(s th P) = FIRST(Qy)
End;
If /;=1; then
Begin
INSERT((/;, u; + uy, p; © pr); @i)s
DELETE(Q;); DELETE(Q,);
(I, 5, py) 1= FIRST(Q,); (g s, Pi) = FIRST(Q))
End
End

All sets of parallel edges can be sorted in an overall time of O(m log). Further-
more, for each call of ADDI1 and MERGEI there are at most O(m) steps. Thus,
the second algorithm also has complexity O(mn + m log m).

Note that if we are interested only in the maximal flow values, these can be calcu-
lated in at most O(m) steps doing only the g%} calculations.

max

References

(11

2]

3]

[4]

[5]

P. Brucker, Network flows in trees and knapsack problems with nested constraints, in: H.J.
Schneider and H. Géttler, eds., Proc. 8th Conf. Graphtheoretic Concepts in Computer Science
(Hanser, Miichen, 1982) 25-35,

P. Brucker, An O(n log n)-algorithm for the minimum cost flow problem in trees, in: G. Hammer
and D. Pallaschke, eds., Topics in Operations Research and Mathematical Economics (Springer,
Berlin, 1984) 299-306.

A. Tamir, Efficient algorithm for a selection problem with nested constraints and its application to
a production-sales planning model, SIAM J. Control Optimization 18 (1980) 282-287.

A. Tamir, Further remarks on selection problems with nested constraints, Department of Statistics,
Tel Aviv University (1979).

J. Valdes, R.E. Tarjan and E.L. Lawler, The recognition of series-parallel diagraphs, SIAM J. Com-
put. 11 (1982) 298-313.

