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It is shown that an acyclic multigraph with a single source and a single sink is series-parallel 

if and only if for arbitrary linear cost functions and arbitrary capacities the corresponding mini- 

mum cost flow problem can be solved by a greedy algorithm. Furthermore, for networks of this 

type with m edges and n vertices, two O(mn + m log m)-algorithms are presented. One of them 

is based on the greedy scheme. 

1. Introduction 

A directed (multi) graph G is given by a finite set E of edges, a finite set V of 

vertices and two mappings h, t : E + V which associate with each edge e E E the head 
h(e) and the tail t(e) of e. h(e) is called a successor of t(e) and t(e) is called a pre- 
decessor of h(e). A vertex without predecessors is called a source; a vertex without 

successors is called a sink. Two edges e and e’ are called parallel if h(e) = h(e’), and 

t(e)= t(e’). For each vertex UE V we denote the set of edges e with t(e)=o by 

OUT(u) and with h(e) = u by IN(o). OUT(u) is the set of outgoing edges with respect 

to u, and IN(u) is the set of ingoing edges with respect to u. A (two terminal) series- 
parallelgraph is a multigraph with exactly one source and one sink, which is defined 

recursively as follows: 

(i) A single edge e together with t(e) and h(e) is a series-parallel graph. 

(ii) If S, and S2 are series-parallel graphs, so is the multigraph obtained by either 

of the following operations: 

(a) Parallel composition: identify the source of S, with the source of S2 and 

the sink of S, with the sink of S2. 

(b) Series composition: identify the sink of S, with the source of S,. 

Consider for a series-parallel graph S = (E, V, h, t) the following parametric net- 

work flow problem P(q) in which q is some nonnegative real parameter, a, (e E E) 
are arbitrary real numbers and c, are nonnegative integers for e E E. Furthermore, 

the source and the sink of S are denoted by s and t respectively. 
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P(q) Minimize c arx,, 
rGL 

(1) 

subject to 

c x, = c x,, 
C’E INlv) etOUT(t,) 

c x,= c xe= 4, 

eeOUT(r) <‘ElN(,, 

(2) 

(3) 

A vector x=(x,) is called a feasible solution for P(q) if x satisfies the restrictions 

(2)-(4). The maximal integer value q for which P(q) has a feasible solution is called 

maximal flow value, and denoted by qmax. 
In Section 2 we will show that an acyclic multigraph with a single source and a 

single sink is series-parallel if and only if for arbitrary linear cost functions {a,}, 
e E E and arbitrary capacities, {c,}, e E E, the corresponding minimal cost flow 

problem P(q), for 05 qsqmax, is solvable by a greedy algorithm. 

Thus the greedy scheme is valid for series-parallel networks. Let 1 I/ 1 = n and 1 E 1 = 

m. An implementation of this greedy scheme in an overall time of O(mn + m log m) 
as well as a second algorithm with the same complexity are presented in Section 3. 

The following special case of the above problem has been dealt with by Brucker 

PI. 
A multigraph G without parallel edges is called a tree if G has exactly one sink 

t and each vertex u # t has exactly one successor. A tree may be transformed into 

a series-parallel graph by adding one source s and edges e with t(e) =s and h(e) = u 

for all leaves (i.e. vertices without predecessors) u of the tree. We also call series- 

parallel graphs constructed in such a way trees. 
Brucker [2] has shown that if G is a tree and q is a fixed integer, problem P(q) 

can be solved in O(m log m) steps. Special tree problems with convex cost functions 

have been discussed by Brucker [I] and Tamir [3], [4]. 

2. Minimum cost flows in series-parallel graphs 

The construction process of series-parallel graphs along their recursive definition 

may be represented by binary trees which are called decomposition trees. In a 

decomposition tree sets of parallel edges of the graph are represented by the leaves 

of the tree. Vertices of the decomposition tree which are not leaves are labelled by 

S indicating a series composition, or P indicating parallel composition. In Fig. 1 an 

example of a series-parallel graph together with its composition tree is shown. Note 

that the sons of a vertex labeled with S are ordered. 

Valdes, Tarjan and Lawler [5] gave an algorithm to check whether a given multi- 

graph is series-parallel and to construct its decomposition tree in that case. The 

complexity of this algorithm is O(IE I). 
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Fig. 1. 

To solve problem P(q) we assume that the series parallel graph S is given by a 

decomposition tree T with vertices 1,2, . . . , r. Furthermore, let the vertices in T be 

enumerated topologica~ly, i.e. we have i< j if j is a father of i. r is the root of 

the tree. The subtree rooted in i is denoted by T,. 7; corresponds to a series-parallel 

submultigraph Sj of S. 

The solution of the parametric problem P(q) may be described by the maximal 

flow value qmax and the optimal value f(q) of the objective function of P(q) for 

each q, Osqsq,,,. 

f is a piecewise linear convex function defined on the interval [O,q,,,] with 

f(0) = 0. A complete description of S is given by a partition of [0, qmax] into con- 

secutive subintervals Zj (j = 1, . . . , t) of length II, where the slope Uj of f does not 

change (see Fig. 2). Note that the sequence uI,u2, . . . . U, is nondecreasing. 

Furthermore, to each interval I/, there corresponds a path pj from s to t which 

has the property that the cost of one unit of flow along this path is equal to Uj. 

Thus, a complete solution of P(q) may be characterized by 

g,,, and (I,, Uj,P,) for j = I, _.., t. (6) 

We also call (6) a solution of P(q). Such a solution may be constructed using the 

following greedy algorithm: 

Greedy Algorithm 
1. For all GEE do q,:=O; j:=O; 
2. While there exists a path connecting s and t do 

3. 

4. 

5. 

Begin 
j:=j+l 

Find a minimal cost path Pj and the corresponding uj-value; 

lj := min{c, 1 eEpj}; 
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1, 
f(Sl 

;; ‘2 ‘t 

Fig. 2. 

6. 

7. 

8. 

For all eEpj do 

Begin 

C,:=C,-lj; 

If c, = 0 then E := E \ {e} 
End 

End 

Notice that the Greedy Algorithm is an augmenting path algorithm which does 

not use backward arcs. 

Next, we will show that this algorithm solves P(q) for all O~q<q,,, and for 

arbitrary data if and only if the network is series-parallel. 

Theorem. Let G be a directed acyclic multigraph with a single source s and a 
single sink t. G is a (two terminal) series-parallel graph if and only if for every set 
of costs (a,}, e E E, and every set of nonnegative capacities {c,}, e E E, the above 
Greedy Algorithm solves the corresponding minimal cost flow problem P(q), for 

O~q~q,,,. 

Y 

a 

The proof of the theorem will use the following notation and definitions. 

A directed path in G from vertex x to vertex y will be denoted by P(x, y). x and 

will then be called its end vertices. 
We will say that two paths P(x, y) and P(u, u) are vertex disjoint if the fact that 

vertex w is in both paths implies that w is an end vertex of P(x, y) and P(u, u). 

Proof. Suppose first that G is series-parallel. The following result justifies the 

validity of the Greedy Algorithm: 

Let 4, 0s41qmax, and let P(s, t) be a minimum cost path connecting the source 

s and the sink t. Then there exists x*, an optimal solution to problem P(q), with 
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x,* 2 min q, min {c,} 
> 

for each edge e E P(s, t) 
reP(s,r) 
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We prove the result by induction on the number of edges in G. Assume that G 

is obtained by a series composition of the series parallel graphs G, and Gz, where 

si, tj are the terminals of G,, i = 1,2 and t, =sz. Let P;(s, t) denote the restriction of 

P(.s, t) to G,, i = 1,2. Consider the problem P(q) defined on G;, i= 1,2. By the 

induction hypothesis there exists an optimal solution x’, i = 1,2, to this problem 

such that xjz min(q, min_.,,,, Cc,}). Since (x1,x2) optimally solves P(q) on G, the 

proof for the series composition is complete. 

Suppose now that G is obtained by a parallel composition of G, and Gz. With- 

out loss of generality assume that P(s, t) is contained in G1. Thus, if q, units are 

flowing through Gt in an optimal solution to P(q) on G, we may assume without 

loss of generality that q, 2 min(q, min,,,,,,, (c,}). By the induction hypothesis on 

G, there exists an optimal solution to P(q) on G such that the flow on each edge 

e E P(s, f) is at least min(q, min,,,,,,, {c,}). 

For the second part of the theorem, let G be a directed acyclic multigraph with 

a single source and a single sink. Assume that the Greedy Algorithm is valid for 

P(q), Osqrq,,,. Suppose that G is not series parallel. It then follows from [5] 

that there exist in G four distinct vertices s’, t’, U, u and five (pairwise) vertex disjoint 

directed paths, P(s’, u), P(s’, u), P(u, u), P(u, f’) and P(u, f’). Furthermore if s’fs 

(i.e., s’ is not a source), the properties of G imply the existence of a path P(s’,s), 
such that P(s’,s) and the above five paths are (pairwise) vertex disjoint. Similarly 

if t’# t there exist a path P(t’, f) such that the seven paths P(s, s’), P(s’, u), P(s’, u), 
P(u, u), P(u, f’), P(u, f’) and P(t’, f) are pairwise vertex disjoint (see Fig. 3). 

Fig. 3. 

Next we define the capacities {ce} and the costs {a,j 

c, = 

I 

2 if e is on P(s,s’) or on P(t’, f), 

1 if e is on P(s’, u) or on P(s’, u) or on 

P(u, u) or on P(u, t’) or on P(u, f’), 

0 otherwise. 

i 

0 if e is on P(s’, u) or on P(u, u) or on P(u, t’), 
a, = 

1 otherwise. 
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If we set q=2, the optimum solution to P(2) does not use the unique minimum 

cost path connecting s and t. Thus, the Greedy Algorithm does not solve f’(2) and 

the proof is complete. 

In the next section we will show that for graphs with m edges and n vertices the 

Greedy Algorithm can be implemented in an overall time of O(mn + m log m). 

3. Implementation. A bottom-up procedure 

In this section we first discuss the implementation of step 4 of the Greedy 

Algorithm. 

The minimal cost path p from s to t and the corresponding u-value can be calcu- 

lated along the decomposition tree of the series-parallel network using the following 

algorithm. 

Algorithm 1 

1. For i := 1 until r do 

2. If i is a leaf then 

3. INITIALIZE(i) 

else 

Begin 

4. Find the left son j and right son k of i; 

5. If i has label P then 

MERGE(j, k; i) 
else 

6. ADD(j, k; i) 
End 

Notice that Algorithm 1 proceeds from the leaves of the decomposition tree to 

the root because the nodes of this tree are enumerated topologically. The procedure 

INITIALIZE(i) chooses among the set E(i) of parallel edges e associated with leaf 

i one, say C, with the smallest a,-value and sets pi := .c?, u, := a?. If E(i) =0, then it 

sets pi := 0, u, := 03. 
The procedures MERGE(j, k;i) and ADD(j, k; i) are defined as follows. 

MERGE( j, k; i) 
If uj 5 uk then 

Begin U, := ~j; pi :=p~ End 

else 
Begin Ui := uk; pi :=pk End 
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ADD(j, k; i) 

u ‘=u +u * 1’ J k> 

Pi=PJ”Pk 

In the second procedure pj opk denotes the concatenation of pJ and pk. p, ‘pk=@ 

if pJ =0 or pk= 0. Notice that if Algorithm 1 calculates p,=0, then there exists no 

path connecting s and t. 

For series-parallel graphs without parallel edges it can be shown by induction that 

the number of edges is at most 2n - 3. Thus the decomposition tree has O(n) vertices 

and, if we do not count the effort involved in step 3, the complexity of Algorithm 

1 is O(n). 

Because of step 8 the number of iterations of the while loop of the Greedy 

Algorithm is O(m). Thus if we do not count the calls of all INITIAL-procedures, 

the overall complexity of the Greedy Algorithm is O(mn). For an efficient imple- 

mentation of the INITIAL procedures we use heaps to represent the sets of parallel 

edges E(i). Then, a minimal cost edge can be found in constant time. Furthermore, 

if in step 8 of the Greedy Algorithm an edge is eliminated, the corresponding heap 

can be updated in O(log m) steps. Thus the overall complexity of the Greedy 

Algorithm is O(mn + m log m). 

We will now discuss an algorithm which solves P(q) for all 0 5 q 5 qmax and has 

the same complexity as the Greedy Algorithm, but some computational advantages. 

Let i be a vertex of the decomposition tree and let S, be the series parallel graph 

associated with T,, the subtree rooted at i. Now let 

(7) 

be a solution of the corresponding subproblem P”‘(q). 

The idea of the algorithm is to solve the problems P(‘)(q) for i = 1, . . . , r recursively 

using Algorithm 1. All we have to do is to choose an appropriate data structure and 

replace the procedures INITIALIZE(i), MERGE(j, k; i), and ADD(j, k;i) by pro- 

cedures INITIALIZEl(i), MERGEl(j, k; i) and ADDl(j, k; i) respectively. These 

new procedures may be described as follows: 

(i) INITIALIZEl(1’) creates a queue Qi of data elements (I,“‘, u~“,p~“), eEE(i) 

with I$‘= cr; ui’)= a,, and p$‘= e, sorted by ui’)-values. Furthermore q,!& is set 

equal to CettCrJ c,. 
(ii) MERGEl(j, k; i) merges the queues QJ and Qk into a new (sorted) queue Q, 

and sets q,!,!& = q!& + q,(,‘$. 

(iii) ADDl(j, k; i) is more complicated. A detailed description is given below. In 

this description FIRST(Q), MAKENULL( INSERT((1, u, p); Q), and DELETE(Q) 

are the usual operations on the queue Q. 

ADDl(j, k; i) 

1. q(‘) := min{q$~X,q~~nka)x}; max 
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2. MAKENULL( 
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3. (I;, Uj,pj) := FIRST(Qj); (Il(, u,,P,) := FIRST(Q,); 

4. While Qj #0 and Qk #0 do 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

Begin 

If $<I, then 

Begin 

INSERT((I,, uj + uk> Pj ‘Pk); Qi); 

lk :=Ik-Ij; 

DELETE(Q,); 

(l,, Uj, Pi) := FIRST(Qj) 

End; 

If l/(<lJ then 

Begin 

INSERT((Ik, uj + ukv Pj ’ Pk); Qi); 

lj := lj - Ik; 

DELETE(Q,); 

(Ik, &,pk) := FIRST(&) 

End; 

If I] = 1, then 

Begin 

INsERT((fJ, UJ + uk, Pj ’ Pk); Qi); 

DELETE(Qj); DELETE(Qk); 

(4, Uj, PI) := FIRST( (I,, uk, Pk) := FIRST(Qk) 

End 

End 

All sets of parallel edges can be sorted in an overall time of O(m log m). Further- 

more, for each call of ADD1 and MERGE1 there are at most O(m) steps. Thus, 

the second algorithm also has complexity O(mn+m logm). 

Note that if we are interested only in the maximal flow values, these can be calcu- 

lated in at most O(m) steps doing only the q,(,$ calculations. 
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