
Discrete Applied Mathematics 10 (1985) 117-124

North-Holland

117

MINIMUM COST FLOW ALGORITHMS FOR

SERIES-PARALLEL NETWORKS

Wolfgang W. BEIN, Peter BRUCKER

Fachbereich Mathematik/Informatik, Universiiiit Osnabriick, Postfach 4469, 4500 Osnabriick,

West Germany

Arie TAMIR

Department of Statistics, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

Received 15 January 1984

It is shown that an acyclic multigraph with a single source and a single sink is series-parallel

if and only if for arbitrary linear cost functions and arbitrary capacities the corresponding mini-

mum cost flow problem can be solved by a greedy algorithm. Furthermore, for networks of this

type with m edges and n vertices, two O(mn + m log m)-algorithms are presented. One of them

is based on the greedy scheme.

1. Introduction

A directed (multi) graph G is given by a finite set E of edges, a finite set V of

vertices and two mappings h, t : E + V which associate with each edge e E E the head
h(e) and the tail t(e) of e. h(e) is called a successor of t(e) and t(e) is called a pre-
decessor of h(e). A vertex without predecessors is called a source; a vertex without

successors is called a sink. Two edges e and e’ are called parallel if h(e) = h(e’), and

t(e)= t(e’). For each vertex UE V we denote the set of edges e with t(e)=o by

OUT(u) and with h(e) = u by IN(o). OUT(u) is the set of outgoing edges with respect

to u, and IN(u) is the set of ingoing edges with respect to u. A (two terminal) series-
parallelgraph is a multigraph with exactly one source and one sink, which is defined

recursively as follows:

(i) A single edge e together with t(e) and h(e) is a series-parallel graph.

(ii) If S, and S2 are series-parallel graphs, so is the multigraph obtained by either

of the following operations:

(a) Parallel composition: identify the source of S, with the source of S2 and

the sink of S, with the sink of S2.

(b) Series composition: identify the sink of S, with the source of S,.

Consider for a series-parallel graph S = (E, V, h, t) the following parametric net-

work flow problem P(q) in which q is some nonnegative real parameter, a, (e E E)
are arbitrary real numbers and c, are nonnegative integers for e E E. Furthermore,

the source and the sink of S are denoted by s and t respectively.

0166-218X/85/$3.30 0 1985, Elsevier Science Publishers B.V. (North-Holland)

118 W. W. Bein et al.

P(q) Minimize c arx,,
rGL

(1)

subject to

c x, = c x,,
C’E INlv) etOUT(t,)

c x,= c xe= 4,

eeOUT(r) <‘ElN(,,

(2)

(3)

A vector x=(x,) is called a feasible solution for P(q) if x satisfies the restrictions

(2)-(4). The maximal integer value q for which P(q) has a feasible solution is called

maximal flow value, and denoted by qmax.
In Section 2 we will show that an acyclic multigraph with a single source and a

single sink is series-parallel if and only if for arbitrary linear cost functions {a,},
e E E and arbitrary capacities, {c,}, e E E, the corresponding minimal cost flow

problem P(q), for 05 qsqmax, is solvable by a greedy algorithm.

Thus the greedy scheme is valid for series-parallel networks. Let 1 I/ 1 = n and 1 E 1 =

m. An implementation of this greedy scheme in an overall time of O(mn + m log m)
as well as a second algorithm with the same complexity are presented in Section 3.

The following special case of the above problem has been dealt with by Brucker

PI.
A multigraph G without parallel edges is called a tree if G has exactly one sink

t and each vertex u # t has exactly one successor. A tree may be transformed into

a series-parallel graph by adding one source s and edges e with t(e) =s and h(e) = u

for all leaves (i.e. vertices without predecessors) u of the tree. We also call series-

parallel graphs constructed in such a way trees.
Brucker [2] has shown that if G is a tree and q is a fixed integer, problem P(q)

can be solved in O(m log m) steps. Special tree problems with convex cost functions

have been discussed by Brucker [I] and Tamir [3], [4].

2. Minimum cost flows in series-parallel graphs

The construction process of series-parallel graphs along their recursive definition

may be represented by binary trees which are called decomposition trees. In a

decomposition tree sets of parallel edges of the graph are represented by the leaves

of the tree. Vertices of the decomposition tree which are not leaves are labelled by

S indicating a series composition, or P indicating parallel composition. In Fig. 1 an

example of a series-parallel graph together with its composition tree is shown. Note

that the sons of a vertex labeled with S are ordered.

Valdes, Tarjan and Lawler [5] gave an algorithm to check whether a given multi-

graph is series-parallel and to construct its decomposition tree in that case. The

complexity of this algorithm is O(IE I).

Minimum cost flow algorithms 11v

Fig. 1.

To solve problem P(q) we assume that the series parallel graph S is given by a

decomposition tree T with vertices 1,2, . . . , r. Furthermore, let the vertices in T be

enumerated topologica~ly, i.e. we have i< j if j is a father of i. r is the root of

the tree. The subtree rooted in i is denoted by T,. 7; corresponds to a series-parallel

submultigraph Sj of S.

The solution of the parametric problem P(q) may be described by the maximal

flow value qmax and the optimal value f(q) of the objective function of P(q) for

each q, Osqsq,,,.

f is a piecewise linear convex function defined on the interval [O,q,,,] with

f(0) = 0. A complete description of S is given by a partition of [0, qmax] into con-

secutive subintervals Zj (j = 1, . . . , t) of length II, where the slope Uj of f does not

change (see Fig. 2). Note that the sequence uI,u2, U, is nondecreasing.

Furthermore, to each interval I/, there corresponds a path pj from s to t which

has the property that the cost of one unit of flow along this path is equal to Uj.

Thus, a complete solution of P(q) may be characterized by

g,,, and (I,, Uj,P,) for j = I, _.., t. (6)

We also call (6) a solution of P(q). Such a solution may be constructed using the

following greedy algorithm:

Greedy Algorithm
1. For all GEE do q,:=O; j:=O;
2. While there exists a path connecting s and t do

3.

4.

5.

Begin
j:=j+l

Find a minimal cost path Pj and the corresponding uj-value;

lj := min{c, 1 eEpj};

120 W. W. Bein et al.

1,
f(Sl

;; ‘2 ‘t

Fig. 2.

6.

7.

8.

For all eEpj do

Begin

C,:=C,-lj;

If c, = 0 then E := E \ {e}
End

End

Notice that the Greedy Algorithm is an augmenting path algorithm which does

not use backward arcs.

Next, we will show that this algorithm solves P(q) for all O~q<q,,, and for

arbitrary data if and only if the network is series-parallel.

Theorem. Let G be a directed acyclic multigraph with a single source s and a
single sink t. G is a (two terminal) series-parallel graph if and only if for every set
of costs (a,}, e E E, and every set of nonnegative capacities {c,}, e E E, the above
Greedy Algorithm solves the corresponding minimal cost flow problem P(q), for

O~q~q,,,.

Y

a

The proof of the theorem will use the following notation and definitions.

A directed path in G from vertex x to vertex y will be denoted by P(x, y). x and

will then be called its end vertices.
We will say that two paths P(x, y) and P(u, u) are vertex disjoint if the fact that

vertex w is in both paths implies that w is an end vertex of P(x, y) and P(u, u).

Proof. Suppose first that G is series-parallel. The following result justifies the

validity of the Greedy Algorithm:

Let 4, 0s41qmax, and let P(s, t) be a minimum cost path connecting the source

s and the sink t. Then there exists x*, an optimal solution to problem P(q), with

Minimum cost flow algorithms

x,* 2 min q, min {c,}
>

for each edge e E P(s, t)
reP(s,r)

121

We prove the result by induction on the number of edges in G. Assume that G

is obtained by a series composition of the series parallel graphs G, and Gz, where

si, tj are the terminals of G,, i = 1,2 and t, =sz. Let P;(s, t) denote the restriction of

P(.s, t) to G,, i = 1,2. Consider the problem P(q) defined on G;, i= 1,2. By the

induction hypothesis there exists an optimal solution x’, i = 1,2, to this problem

such that xjz min(q, min_.,,,, Cc,}). Since (x1,x2) optimally solves P(q) on G, the

proof for the series composition is complete.

Suppose now that G is obtained by a parallel composition of G, and Gz. With-

out loss of generality assume that P(s, t) is contained in G1. Thus, if q, units are

flowing through Gt in an optimal solution to P(q) on G, we may assume without

loss of generality that q, 2 min(q, min,,,,,,, (c,}). By the induction hypothesis on

G, there exists an optimal solution to P(q) on G such that the flow on each edge

e E P(s, f) is at least min(q, min,,,,,,, {c,}).

For the second part of the theorem, let G be a directed acyclic multigraph with

a single source and a single sink. Assume that the Greedy Algorithm is valid for

P(q), Osqrq,,,. Suppose that G is not series parallel. It then follows from [5]

that there exist in G four distinct vertices s’, t’, U, u and five (pairwise) vertex disjoint

directed paths, P(s’, u), P(s’, u), P(u, u), P(u, f’) and P(u, f’). Furthermore if s’fs

(i.e., s’ is not a source), the properties of G imply the existence of a path P(s’,s),
such that P(s’,s) and the above five paths are (pairwise) vertex disjoint. Similarly

if t’# t there exist a path P(t’, f) such that the seven paths P(s, s’), P(s’, u), P(s’, u),
P(u, u), P(u, f’), P(u, f’) and P(t’, f) are pairwise vertex disjoint (see Fig. 3).

Fig. 3.

Next we define the capacities {ce} and the costs {a,j

c, =

I

2 if e is on P(s,s’) or on P(t’, f),

1 if e is on P(s’, u) or on P(s’, u) or on

P(u, u) or on P(u, t’) or on P(u, f’),

0 otherwise.

i

0 if e is on P(s’, u) or on P(u, u) or on P(u, t’),
a, =

1 otherwise.

122 W. W. Bein et al.

If we set q=2, the optimum solution to P(2) does not use the unique minimum

cost path connecting s and t. Thus, the Greedy Algorithm does not solve f’(2) and

the proof is complete.

In the next section we will show that for graphs with m edges and n vertices the

Greedy Algorithm can be implemented in an overall time of O(mn + m log m).

3. Implementation. A bottom-up procedure

In this section we first discuss the implementation of step 4 of the Greedy

Algorithm.

The minimal cost path p from s to t and the corresponding u-value can be calcu-

lated along the decomposition tree of the series-parallel network using the following

algorithm.

Algorithm 1

1. For i := 1 until r do

2. If i is a leaf then

3. INITIALIZE(i)

else

Begin

4. Find the left son j and right son k of i;

5. If i has label P then

MERGE(j, k; i)
else

6. ADD(j, k; i)
End

Notice that Algorithm 1 proceeds from the leaves of the decomposition tree to

the root because the nodes of this tree are enumerated topologically. The procedure

INITIALIZE(i) chooses among the set E(i) of parallel edges e associated with leaf

i one, say C, with the smallest a,-value and sets pi := .c?, u, := a?. If E(i) =0, then it

sets pi := 0, u, := 03.
The procedures MERGE(j, k;i) and ADD(j, k; i) are defined as follows.

MERGE(j, k; i)
If uj 5 uk then

Begin U, := ~j; pi :=p~ End

else
Begin Ui := uk; pi :=pk End

Minimum cost flow algorithms 123

ADD(j, k; i)

u ‘=u +u * 1’ J k>

Pi=PJ”Pk

In the second procedure pj opk denotes the concatenation of pJ and pk. p, ‘pk=@

if pJ =0 or pk= 0. Notice that if Algorithm 1 calculates p,=0, then there exists no

path connecting s and t.

For series-parallel graphs without parallel edges it can be shown by induction that

the number of edges is at most 2n - 3. Thus the decomposition tree has O(n) vertices

and, if we do not count the effort involved in step 3, the complexity of Algorithm

1 is O(n).

Because of step 8 the number of iterations of the while loop of the Greedy

Algorithm is O(m). Thus if we do not count the calls of all INITIAL-procedures,

the overall complexity of the Greedy Algorithm is O(mn). For an efficient imple-

mentation of the INITIAL procedures we use heaps to represent the sets of parallel

edges E(i). Then, a minimal cost edge can be found in constant time. Furthermore,

if in step 8 of the Greedy Algorithm an edge is eliminated, the corresponding heap

can be updated in O(log m) steps. Thus the overall complexity of the Greedy

Algorithm is O(mn + m log m).

We will now discuss an algorithm which solves P(q) for all 0 5 q 5 qmax and has

the same complexity as the Greedy Algorithm, but some computational advantages.

Let i be a vertex of the decomposition tree and let S, be the series parallel graph

associated with T,, the subtree rooted at i. Now let

(7)

be a solution of the corresponding subproblem P”‘(q).

The idea of the algorithm is to solve the problems P(‘)(q) for i = 1, . . . , r recursively

using Algorithm 1. All we have to do is to choose an appropriate data structure and

replace the procedures INITIALIZE(i), MERGE(j, k; i), and ADD(j, k;i) by pro-

cedures INITIALIZEl(i), MERGEl(j, k; i) and ADDl(j, k; i) respectively. These

new procedures may be described as follows:

(i) INITIALIZEl(1’) creates a queue Qi of data elements (I,“‘, u~“,p~“), eEE(i)

with I$‘= cr; ui’)= a,, and p$‘= e, sorted by ui’)-values. Furthermore q,!& is set

equal to CettCrJ c,.
(ii) MERGEl(j, k; i) merges the queues QJ and Qk into a new (sorted) queue Q,

and sets q,!,!& = q!& + q,(,‘$.

(iii) ADDl(j, k; i) is more complicated. A detailed description is given below. In

this description FIRST(Q), MAKENULL(INSERT((1, u, p); Q), and DELETE(Q)

are the usual operations on the queue Q.

ADDl(j, k; i)

1. q(‘) := min{q$~X,q~~nka)x}; max

124

2. MAKENULL(

W. W Bein et al.

3. (I;, Uj,pj) := FIRST(Qj); (Il(, u,,P,) := FIRST(Q,);

4. While Qj #0 and Qk #0 do

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Begin

If $<I, then

Begin

INSERT((I,, uj + uk> Pj ‘Pk); Qi);

lk :=Ik-Ij;

DELETE(Q,);

(l,, Uj, Pi) := FIRST(Qj)

End;

If l/(<lJ then

Begin

INSERT((Ik, uj + ukv Pj ’ Pk); Qi);

lj := lj - Ik;

DELETE(Q,);

(Ik, &,pk) := FIRST(&)

End;

If I] = 1, then

Begin

INsERT((fJ, UJ + uk, Pj ’ Pk); Qi);

DELETE(Qj); DELETE(Qk);

(4, Uj, PI) := FIRST((I,, uk, Pk) := FIRST(Qk)

End

End

All sets of parallel edges can be sorted in an overall time of O(m log m). Further-

more, for each call of ADD1 and MERGE1 there are at most O(m) steps. Thus,

the second algorithm also has complexity O(mn+m logm).

Note that if we are interested only in the maximal flow values, these can be calcu-

lated in at most O(m) steps doing only the q,(,$ calculations.

References

[II P. Brucker, Network flows in trees and knapsack problems with nested constraints, in: H.J.

Schneider and H. Gottler, eds., Proc. 8th Conf. Graphtheoretic Concepts in Computer Science

(Hanser, Mtichen, 1982) 25-35.

[2] P. Brucker, An O(n log n)-algorithm for the minimum cost flow problem in trees, in: G. Hammer

and D. Pallaschke, eds., Topics in Operations Research and Mathematical Economics (Springer,

Berlin, 1984) 299-306.

[3] A. Tamir, Efficient algorithm for a selection problem with nested constraints and its application to

a production-sales planning model, SIAM J. Control Optimization 18 (1980) 282-287.

[4] A. Tamir, Further remarks on selection problems with nested constraints, Department of Statistics,

Tel Aviv University (1979).

[5] J. Valdes, R.E. Tarjan and E.L. Lawler, The recognition of series-parallel diagraphs, SIAM J. Com-

put. 11 (1982) 298-313.

