
ELSNIER

COMPUTER
AIDED

GEOMETRIC
DESIGN

Computer Aided Geometric Design 11 (1994) 39-69

Surface intersection using parallelism

Long Chyr Chang a,*,t, Wolfgang W. Bein a,t,§,q, Edward Angela,11

a Deportment of Computer Science, The University of New Mexico, Albuquerque, NM 87131, USA

Received October 1991; revised September 1992

Abstract

The support of Boolean set operations in free-form solid modeling systems requires
the repeated intersection of parametric surfaces. Present approaches to this problem
are sequential and must make trade-offs between accuracy, robustness and efficiency.
In this paper, we investigate a parallel approach to the surface intersection problem
that shows, both theoretically and empirically, that with parallelism we can achieve
both speed and precision simultaneously. We first develop a theoretical foundation for
a subdivision method and derive complexity bounds. We show that the basic algorithm
can be improved by parallelism. We then design two tolerance-based parallel subdi-
vision algorithms, a macro-subdivision algorithm designed for MIMD shared memory
machines and a lookahead-subdivision algorithm for pipelined MIMD machines. Em-
pirical results on the Sequent Balance 21000, the Alliant FX/8, and the Cray-2 verify
that significant speed-up is achievable.

Key words: Surface intersections; Parallel algorithms; Free-form solid modeling systems;
Algorithm complexity

1. Introduction

Solid modeling systems provide an environment that allows designers to
edit, visualize, and analyze complex objects bounded by sculptured (free-
form) surfaces for prototyping and testing on computer screens before they
are manufactured. The success of such systems has been recognized as a key

*Present address: Superconducting Super Collider Laboratory, 2550 Beckleymeade Avenue,
Dallas, TX 75237, USA.

t Sequent-Alliant time grant Argonne Advanced Computing Research Facility.
iPresent address: American Airlines Decision Technologies, P.O. Box 619616, MD 4462 HDQ,

Dallas/Fort Worth Airport, TX 75261-9616, USA.
BSupported by Sandia National Laboratories grant, SURP No. 05-9858 task9.
qCRAY time grant from the National Center f& Supercomputing Applications
IbCorresponding author. Email: angel@cs.unm.edu.

0167-8396/94/$07.00 @ 1994 Elsevier Science B.V. All rights reserved
SS’DI 0167-8396(93)E0013-4

40 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

Table 1
Complexity of surface/surface intersection

Surface pair Resultant curve

Two planes Straight line

Plane and quadric Conic

Two quadrics Quartic space curve

Plane and rational bicubic Degree-l 8 plane algebraic curve (190 terms)

Two rational bicubics Degree-324 space curve (17 million terms)

element in developing a fully automated computer-aided design/manufacturing
(CAD/CAM) system for practical applications (Wolfe, 1987). One of the ma-
jor research problems in designing improved solid modeling systems is to ex-
tend the geometric domain from quadric to higher degree or free-form surfaces.

A major computational problem in designing such a free-form system is the
difficulty of the surface/surface intersection (SSI) problem. SSI is the funda-
mental computation for supporting Boolean set operations such as intersection,
union, and difference, that must be performed in the editing and modeling
of complex objects constructed from simple primitives. Fundamental to the
SSI problem are the problems of computation and representation of the in-
tersection curves. Wilson (1988) gives a table (see Table 1) illustrating how
the complexity of the SSI problem grows as the degree of the mathematical
surfaces increases.

Several approaches to solve the SSI problem have been proposed (Casale,
1985; Cracker, 1987; Farouki, 1987) Regardless of which approach is used,
a good algorithm must satisfy three properties: accuracy, robustness, and effi-
ciency (Pratt, 1986; Hoffman, 1989). The computed intersection curve must
be within a specified tolerance to the true intersection curve. The algorithm
must not be subject to failure and must find all the portions of an intersection
curve which may have many disjoint branches. For many applications, algo-
rithms must be efficient enough so that interaction between a CAD user and a
CAD system can be achieved. These requirements present a serious dilemma
to the algorithm designer. An algorithm that is robust and accurate may be
very slow, while an efficient algorithm might fail in some cases, In spite of
much effort, no present algorithm satisfies all three of the above properties. To
make practical use of one of the present sequential algorithms, implementors
must make significant trade-offs between desirable properties of the algorithm.

As commercial parallel computers become cheaper and more available, a
natural approach to SSI that takes advantage of parallel architectures appears
promising. However, before parallel approaches can be used effectively in
practice, the following issues must be addressed:

How can the various parallel architectures be used to improve the trade-off
dilemma for SSI algorithms?
How much improvement can a parallel algorithm make over its sequential
counterpart?
Is there an optimal number of processors which achieves the best cost-
effective nerformance ratio?

L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69 41

We will show, both theoretically and empirically, that parallelism indeed
presents an approach that can surmount the difficulties in achieving speed and
precision simultaneously. The paper is organized as follows: Section 2 presents
a framework of algorithm complexity based on derivative bounds of surfaces
and discusses how parallelism can be used to solve the speed and precision
dilemma theoretically. We develop a framework for algorithm complexity based
on the curvature information of C2 surfaces. We show that the complexity of
subdivision methods can be expressed in terms of the curvature of the two
surfaces and an input tolerance. This complexity analysis indicates precisely
how a parallel solution can resolve the trade-off dilemma between speed and
precision of a SSI algorithm.

Section 3 discusses the inherent problems involved in parallelizing sub-
division and describes two parallel algorithms for surface intersection. We
develop both parallel algorithms and appropriate data structures for SSI using
subdivision or curve-tracing methods. We will show empirically how much
improvement a parallel algorithm can make over its sequential counterpart.
We have chosen shared memory MIMD (multiple instructions multiple data
streams) machines as the primary hardware platforms for implementing par-
allel algorithms because of their wide availability and ease of programming.
The proposed algorithms have been tailored to three different MIMD and
vector pipeline 1 parallel machines (Sequent Balance 2 1000, Alliant FX/8, and
Cray-2). Section 4 illustrates the benchmarks which were obtained from these
implementations. Empirical results are shown and analyzed.

2. Complexity analysis

2. I. Background

In what follows, we derive formal properties of the tolerance based SSI algo-
rithms. In particular, we will consider surfaces which are given as parametric
images P over a rectangular domain Q E E2. P : Q + E3 is assumed to be a
C2 function. Given two such surfaces Si and Sz, and a tolerance a, the problem
is to compute the intersection curves y1 s 52i and y2 C 522 such that

(uyu;:y, M)EY2

inf (Pl(u,v) - Pz(s,t) I< E.

Our algorithm complexity analysis is based on the use of derivative bounds
for parametric surfaces. Several studies (Filip, 1986; Herzen 189, 1990; Kala,
1989, Lane, 1979) have demonstrated that the derivative bound of a surface
can be used in computing piecewise linear approximation within a tolerance,

‘A vector computer can carry out the same operation simultaneously on a vector of data. For
example, a vector machine can often add two vectors or multiply a vector by a constant in
one operation. Pipeline machines have two or more successive processors connected sequentially.
Multiple operations can be carried out concurrently on a stream of data, similar to the way an
assembly line functions.

42 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

constructing a hierarchy of bounding volumes for a surface, and computing
surface intersection within a specified tolerance. The primary advantage of
using a derivative approach is that the algorithms developed for the above
applications are very generic since only C’ or C2 continuity is required. In
addition, a hierarchy of bounding volumes of a surface can be computed very
easily. Previous work using bounds on the derivatives of C’ and C2 surfaces can
be classified as the Lipschitz-condition approach and the curvature approach
respectively. Both approaches can be used for the above applications, the
primary difference being the size of the bounding volumes they generate. For
the detailed comparison of both approaches, the reader is referred to (Chang,
1991).

We will use the following theorem due to (Filip, 1986) as the basis for our
work.

Theorem 2.1 (Filip). Let T c R2 be a right triangle with vertices (A, B, C) of
the firm B = A + (11, 0) and C = A + (0, I2). Let f : T + R3 be any C2
surface, and I (u, v) be any linearly parameterized triangle with 1 (A) = f (A),
1(B) = f(B) and 1(C) = f(C) (seeFig. l(A), (B)). Then

(1)

where

M3 = sup ~u,Jla2~Y~ II*

Piecewise linear surface-approximation
By the above theorem, we can compute a piecewise linear approximation

function 1 : [0, 1] x [0, 1] -+ R3, for a given C2 surface f : [0, 1] x [0, 1] + R3
and an arbitrary tolerance E such that sup 11 f (u, v) - I (u, v) 11 < E.

If we divide the domain [0, 1] x [0, 1] uniformly into mn rectangular sub-
domains, we can form 2mn right triangle subdomains (see Fig. 1 (C)). The
desired approximation can be computed within a given tolerance by evaluating
f at an (m + 1) x (n + 1) grid of points and forming 2mn triangular patches.
Letting /I = l/n and 12 = l/m, we can compute n and m by the equation

+-$-M, + fM3 (2)

Without loss of generality, we can assume that n and m are equal. This
approach will be called the uniform domain decomposition (UDD) approach.

L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69 43

(A) Right Triangular Domain (B) Corresponding Parametric Surface

f(A) = t(A)
A 11 B

(C) Piecewise Linear Approximation (D) Reduced Bound Constant in Subdivision

n=m=B
k=a_(/:M1+2111*MI+ 1:t.q

1 D

h=’
Ill

Fig. 1. Derivative bounds and piecewise linear approximation.

Thus, we have

2mn=M +2M2+ M3

4E * (3)

In particular, suppose we let M = max{Ml,M2,M3}, that is, M is the largest
second derivative of the surface mapping function in the U, u, and uw direction
(referred to as the curvature bound of surface later). Then

2mn G M/E. (4)

Bounding box and scale factor
Computing a bounding box for a surface patch using bounds on its derivatives

is straight forward. We first compute the Min-Max bounding box (Pmi,, P,,,,)
of four corners of the surface patch. The bounding box of the whole surface
patch is then computed as (Pmi, - (K, K, K), Pma, + (K, K, K)) where

K= #:MI + 21112M2 + l;M3).

There are two ways to compute a hierarchy of bounding boxes for a surface
in the course of a subdivision process. First, one can compute the derivative
bounds for each sub-domain in a hierarchy. This will give a tighter bounding
box for each sub-surface. For some surfaces, such as Bernstein-Bezier surfaces,
this can be done easily, while for most other surfaces, considerable effort
is required. Alternatively, one can use the derivative bound for the entire
parametric surface domain as a global bound K. For each subpatch split from
a surface patch in a uniform subdivision process, its K is just one fourth of
its parents since 11 and 12 are reduced by half (see the above equation and

44 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

Fig. 1 (D)). For a surface patch in depth d in a hierarchy of subdivisions, its
K is computed as K/4d. The bounding box becomes smaller as the subdivision
becomes deeper. This feature makes Filip’s subdivision approach attractive.
The constant scale factor is called the bounding volume scale factor. In this
case, it is 4.

2.2. Complexity of surface intersections

The approximate intersection of two parametric surfaces can be computed
directly from their piecewise linear approximations. This approach requires
evaluating surface grids for each surface, and then repeatedly computing the
intersection of two triangles (ITT).

Proposition 2.2. Assume two C2 parametric surfaces fi , fi : [0, 1] x [0, 1] -+ R3,
are piecewise linearly approximated with n1 and n2 triangle surface patches
within a tolerance e/2, respectively. Then, at most nln2 ITT tasks are needed
to compute the intersection curve within a tolerance E.

Proof. (1) Obviously, the number of ITTs is at most nln2.
(2) Let 11 and 12 be piecewise linear approximations of surfaces 1 and 2

respectively. By definition, we have

IIll(U,~) -fi(U,?J)ll 4 $6 11/2cs,t, -f2(s,t)ll G g.

Therefore,

IIll(U,~) -12(&t) - (fi(U,W) -f2(s,t))ll

= Ill1 (u, 21) - _fl (UT u 1 - (12 (s, t) - h (s, t))I1

G IIll -_fl(%‘u)lI + II(l2(s,t) -f2(s,t))ll

< ;& + ;& = E.

If)I11 (u,w) - 12(s, t)]] = 0, then we have

llfl (u, ‘u) - f2 (s, t)ll < e. 0

Proposition 2.3. Given two C2 parametric surfaces and a tolerance E, the SSI
problem can be approximated by the uniform domain decomposition (UDD)
method, and the number of ITTs can be no more than [4kt~M2/~~1, where A41
and M2 are the curvature bounds off, and f2, respectively.

Proof. By Proposition 2.2 and Eq. (4), the number of ITTs is at most

The above proposition shows the computational complexity is quadratically
proportional to the inverse of the given tolerance. Therefore, if we increase the
precision of the tolerance by a factor of a hundred, we can expect that the loss

L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69 45

of speed is a factor of ten thousand. Such loss cannot be made up by using
coarse grain2 parallel computers since there are too few processors on a coarse
grain architecture to compensate for such a loss.

2.3. The subdivision method

The UDD approximation method can be viewed as an exhaustive approach
that demonstrates the worst case complexity of the SSI algorithm. A better
solution is to reduce the number of ITT computations. Subdivision is one such
method. Subdivision methods use the divide and conquer paradigm to reduce
recursively the original problem into a number of subproblems of the same
type until each subproblem can be solved directly. The subdivision algorithm
for intersecting two parametric surfaces successively subdivides regions of the
surfaces that potentially intersect each other until the final regions are so
nearly flat that their intersection can be computed by planar approximations.
In general, the algorithm requires the following:
l a bounding box test mechanism to check quickly whether or not any pair of

surfaces may intersect;
l a subdivision algorithm to subdivide the surfaces into a number of sub-

surfaces;
0 a criterion for termination;
0 a triangle-triangle intersection solver.

Present algorithms using subdivision methods differ in how they handle
the bounding box test, subdivision process, termination criterion, and also
the type of surfaces they can deal with (Lane, 1991; Houghton, 1985; Filip,
1986; Barnhill, 1987). Some subdivide three-dimensional spatial surfaces as
in (Lane, 199 1). Others subdivide the two-dimensional parametric domain
as in (Filip, 1986). Algorithms can be uniform or non-uniform. For surface
modeling, it is more natural to deal with a two-dimensional domain since the
intersection curve can be represented as a trimmed-curve in 2D parametric
domain and a trimmed region in a parametric domain corresponds to a surface
patch after Boolean set operations, We will consider using a uniform domain
decomposition method instead of non-uniform adaptive method as a model
for complexity analysis of SSI, since a non-uniform version can be viewed as
an improved version of a uniform version. The complexity analysis of uniform
versions can be used to explain the behavior of non-uniform subdivision version
as well. In what follows, we give a general pseudo code of a SSI algorithm
using a subdivision method to serve as a basis for the complexity analysis and
for parallel implementations. In the code we use a “global queue” to store

2The grain size of a parallel machine refers to the complexity of the problems individual
processors can handle. Coarse grain machines such as the CRAY-YMP tend to have a few (2-32)
sophisticated processors, often with vector capability. Fine grain machines such as the CM-2
can have thousands of very simple processors while medium grain machines such as the MIMD
distributed memory machines can have up to a 1024 processors, each as sophisticated as the
processor in a scientific workstation.

46 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

intersection tasks that have to be processed further, as well as a quadtree
structure, to keep the information on subdivisions to this point in the process.

Surface_Split(s)

/* pseudo code for a subdivision */

Surface s;

c

Divide the parametric domain of s into 4 regions.

For each region, evaluate the parametric mapping of its corners

and compute the bounding box using curvature information.

Update quadtree data structure.

1

SSI(Sl,S2)

Surface S1,SZ;

c

Determine the bounding boxes of Sl and S2.

If the bounding boxes do not intersect then return.

else put pair of surfaces Sl, S2 into a global queue.

whilecqueue is not empty) (

Take a pair of sub-surfaces sl, 92 from the global queue.

Determine the "flatness" of sl and s2

If both surfaces sl and s2 are flat then C

Compute planar triangle approximations (tll,t12),

(t2l,t20) of sl and s2 respectively;

compute the intersection lines of 4 pairs of

triangle/triangle intersections.

Ielse{

if(both surfaces sl and s2 are not flat) {

Subdivide both surfaces./*call Surface-Split*/

Test bounding box intersection for each of 16 pairs

of subdivided sub-surfaces from sl,s2.

if the bounding boxes intersect then add them into

the global queue.

> else I

subdivide non-flat surface.

for each one of 4 sub-surfaces from non-flat

surface, test whether their bounding boxes

intersect with the flat surface or not;

if yes then add them into the global queue.

2.3.1. Complexity of the subdivision method
In the subdivision process, the number of intersections of flat regions, bound-

ing box tests and subdivisions depends on the spatial orientation of the two
surfaces, their curvatures and a tolerance. Hence, it is quite natural to express
the complexity in terms of curvature information and input tolerance. From
different spatial orientations, we can obtain both upper and lower bound com-
plexities for the subdivision algorithm. Fig. 2 illustrates the upper and lower
bound situations. In the lower bound situation, the intersection curve passes

L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69 47

(A) Best Case: (B) Worst Case:

Surfaces Intersected at Near Corners Surfaces Nearly Overlap

Fig. 2. Complexity relates to surface orientation.

only through one node in the lowest subdivision level of each surface, e.g. two
surfaces intersect each other at a corner. In the upper bound situation, two
surfaces intersect each other everywhere (e.g. two identical surfaces).

We can now give the complexity of the algorithm and analyze how parallelism
can help in solving the trade-off problem between speed and precision.

Proposition 2.4. Given two C2 parametric surfaces PI and P2, and a toler-
ance E. Assuming the surfaces intersect, the computation time for SSI us-
ing the subdivision method and a quadtree data structure has a lower bound
!G!(log,((Mi + M~)/E)), and an upper bound O(((Ml + M~)/E)~), where Ml,
M2 are the curvature bounds of surface P, and P2, respectively.

The detailed proof is given in Appendix A.

Observation 1. In the design of a free-form solid, we use Boolean set operations
(union, intersection and difference) to design the solid from primitives. In the
best case (lower bound) situation, the parallel approach might work worse than
a sequential approach. In the worst case (upper bound) situation, a parallel
approach can improve the computation speed significantly. However, since
the upper bound complexity is quadratically proportional to the inverse of
tolerance, even in this case the improvement may not be of much significance
as we may still not be able to achieve the desired tolerance in a reasonable
amount of time.

Observation 2. We expect the upper and lower bound extremes only in the
cases in which the two surfaces either touch minimally or nearly overlap (see
Fig. 1), Therefore, we would like to have a bound to characterize the more
common situations where there is partial overlap. From a practical point of
view a more reasonable assumption is that in each subdivision process, about
half of the regions of the surface-patch are eliminated by a bounding box test.
In this case, the bound of 0 ((Ml + M2)/E) is obtained. We regard this bound

48 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

as a “practical bound”. An exact derivation of this third bound is given in
Appendix A.

Observation 3. To support Boolean set operations, it is also necessary to
solve the problem of intersecting one parametric surface and an algebraic
surface within a tolerance. The intersection curve of the parametric surface

{(x,v,z) = P(u,u) : (u, VJ) E Q = [0, 1] x [0, 11) with the algebraic sur-
face {f (x, y, z) = 0 : (x, y, z) E lFt3} has an exact representation of the form
{C (u, TJ) = 0 : (u, u) E Sz}. Therefore, if we can compute the plane curve
C (u, u) = 0 within a tolerance (for convenience, we refer to such a curve
as being defined by]C (u, w) I* < E), then the mapping of the plane curve
into the parametric surface represents the computed 3D intersection curves
{(x,y,z) = P(u,w) :]C(u,w)]* 4 E,(u,w) E Q} that fall into the area of
the algebraic surfaces in If (x, y, z) 1 < E. In other words, the problem of trac-
ing the intersection curves of a parametric surface and an algebraic surface
within a given tolerance can be solved by computing a plane curve such that

]C(u,v)]* 6 e.
On the other hand, the problem of computing]C (u, v)]* < E can be viewed

as the problem of computing the intersection curves of two surfaces Z =
C(X, Y) and Z = 0 within a tolerance. Both surfaces can be represented in
parametric form. In particular, one surface is a plane. Therefore, the problem
actually is a special case of the SSI tolerance problem and can be solved by
using the above algorithms.

Proposition 2.5. The problem of computing 1 C (U, u) I* d E can be solved by the
subdivision method with a quadtree data structure and has worst case complexity
of O(M/E), where M is the curvature bound of the surface Z = C (u, v).

Proof. If subdivision with quadtree data structure is used, then only one surface
is subdivided at any time. By the same arguments as in Proposition 2.4, the
worst case complexity is 0 (M/E). 0

Observation 4. From the above propositions and observations, we expect that
in most situations the speed of the subdivision algorithm is proportional to
the inverse of the tolerance (precision). Therefore, if we can design a parallel
algorithm with linear speed-up, a parallel solution can indeed make up for
the loss of speed caused by increasing tolerance linearly, and hence parallelism
would be a feasible approach for solving the dilemma of speed versus precision.

3. Parallel subdivision algorithms

We will consider three strategies for parallelizing the underlying subdivision
algorithm. The first strategy is to place each task generated by a subdivision
process into a task queue. Each task includes any further subdivisions generated
by the task, bounding box tests and triangle/triangle intersections. Tasks are

L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69 49

assigned to processors from the queue, a strategy that might appear to divide
tasks evenly among all processors and to keep the processors as busy as
possible. We call this strategy macro-subdivision because each processor gets a
task from the queue and works on its task independently. This strategy is easy
to implement but has some drawbacks. In practice, the tasks may not be evenly
distributed to all the processors, especially when the spatial orientation of two
surfaces is near a best case situation. Consider two surfaces that intersect each
other at a corner. In this case, only one subdivision for each surface is needed
at any level and only a single task is available to the processors at any time.
Thus, most processors will sit idle and the parallel approach will be no better
than a sequential one.

The second strategy is to reduce the computation time of a subdivision pro-
cess, bounding box tests, triangle/triangle intersections, and queue operations
by having all the processors working together to solve the operations required
by a single subdivision. Because all processors are working together on a sin-
gle task at a time, we call this strategy the micro-subdivision approach. This
approach might have better performance than the macro-subdivision approach
in the best case situation. But it also has some drawbacks. Since each subtask,
e.g. an intersection or a bounding box test, has a different grain size, there
will not be enough work for all the processors at all times and most available
processors may sit idle. In addition, this strategy may have a high degree of
synchronization overhead. Unless the overhead of the synchronization prim-
itives in the parallel library can be reduced significantly, the performance of
this approach may be worse than the macro-subdivision approach in most
practical situations.

A better approach is to combine these two approaches into a multi-level hy-
brid parallel algorithm. This approach combines macro-subdivision and micro-
subdivision in a doubly nested fashion. There are two types of multi-level
parallel approaches, that depend on the underlying architecture of the parallel
machine. For a shared memory MIMD vector pipeline machine the inner-level
(micro-subdivision) of parallelism can be implemented by using vector process-
ing techniques and the outer-level can be implemented as a macro-subdivision
method. This approach is generally superior to both the micro-subdivision
and macro-subdivision approaches although its implementation can be cum-
bersome. To take full advantage of vector pipeline features, a new technique
which precomputes some portions of the subdivision process is developed. We
call this approach a lookahead-subdivision approach, because it always looks
ahead into the next subdivision level.

For middle grain MIMD shared memory machines without vector pipeline
features, a multi-level hybrid parallel algorithm is implemented as follows: all
the processors available are divided into several groups; each group has one
master processor, the others are slave processors. The master processors are
dynamically scheduled to get a task from the task queue using the macro-
subdivision approach. The slave processors are devoted to those tasks which
must be performed by their corresponding master processors (similar to the
micro-subdivision approach). These tasks can be statically scheduled at the

50 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

beginning. The number of processors in a group depends on the tasks they
need to solve. For example, in the subdivision process, the ideal number of a
group is 4, or 5 (see pseudo code Surface-Split). This scheme allows a master
processor to reduce its time in the subdivision process; thus indirectly reducing
the possibility of traffic congestion caused by synchronization overhead.

However, the implementation of this approach is the most difficult of the
above approaches, and its performance is also strongly affected by the over-
head of synchronization primitives in the parallel library. Our implementation
shows that the performance of this approach has no significant improvement
as compared with macro-subdivision or micro-subdivision approaches in most
practical cases and we will not discuss this approach further. Instead, we will fo-
cus attention on the macro-subdivision and lookahead-subdivision approaches.

3. I. Data structures and synchronization issues

For MIMD shared memory machines, there are two primary goals in de-
signing a parallel algorithm. First, all tasks must be partitioned so that each
processor has an equal share. Second, all processors must be kept as busy
as possible while minimizing the synchronization overhead. To achieve these
goals, appropriate data structures must be designed so that the performance of a
parallel algorithm can be as close as possible to the theoretical linear speed up.

Theoretically, subdivision, which uses a divide-and-conquer paradigm, has a
high degree of parallelism. All subdivided tasks can be put into the global task
queue. Each processor takes a task from the global task queue and performs the
same subdivision process until there are no tasks remaining and all processors
are idle. However, there are some limitations which affect the performance of
a parallel subdivision algorithm.

First, subdivisions are processed sequentially until each sub-patch is nearly
flat. Since we use a quadtree to represent a subdivided surface, the complexity
is dependent on the maximum depth of the quadtrees. Second, the global task
queue is implemented as a shared resource. Therefore, care must be taken so
that only one processor is allowed to manipulate the global task queue at a time.
Third, manipulation of the global task queue must be implemented efficiently
so as to minimize the overhead of task contention among the processors.

A parallel subdivision algorithm for SSI is more complex than a general
parallel subdivision algorithm. Specifically, it must deal with the following
situations:
l If a sub-patch of a surface has been subdivided by a process, then other

processes should not also subdivide this surface-patch.
l New tasks are generated by combining any pairs of subdivided surface

patches from each surface. Therefore, there is a potential deadlock situation
since a process might have to wait for another process to finish its subdivided
task.

l Choice of the degree of a tree data structure, corresponding to the degree
(number) of sub-patches split from subdivision process, affects the perfor-
mance of the algorithm.

L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69 51

Solutions for the first two situations relate to algorithm design and data
structures, while solutions for the third situation depend on the grain size
of the underlying MIMD shared memory machine. For line grain machines
the following should be considered: If surface 1 can be approximated with ~11
rectangular sub-patches and surface 2, n2 rectangular sub-patches, then the total
number of tasks is IZ~ x n2. If this number is less than or equal to the number
of processors, then each task can be performed by a processor independently.
Therefore, in a fine grain size machine, subdivisions of high degree can be
considered so that the number of subdivision levels can be minimized. For
coarse grain size machines however, quadtrees turn out to be an appropriate
data structure since such computers tends to have small number of processors.

3.2. Macro-subdivision parallel algorithm

In this section, a macro-subdivision parallel algorithm using a quadtree
data structure is addressed. It is designed for coarse or middle grain size
MIMD shared memory machines, and it is based on the principles discussed
above. In addition, we use three data structures to minimize the overhead of
synchronization:

1. A global task queue, implemented as a linked list, that holds tasks which
are generated dynamically.

2. A lock synchronization primitive for each sub-patch that allows proces-
sors to subdivide different sub-patches simultaneously (and if different
processors are subdividing the same surface patch then only one processor
is allowed to do that task and the others must wait or do other work).

3. A local task queue for each processor to reduce memory contention in
the global queue.

The sequential version of the subdivision algorithm using the domain de-
composition method is shown in pseudo code SSI (). Specifically, each surface
patch is divided into four sub-patches by subdividing its corresponding do-
main into four regions. Each region corresponds to a node in the quadtree
(see Fig. 3). When a region is small enough that its surface patch mapping
can be approximated by a planar rectangle formed by four corners of surface
patch within a specified tolerance, it is not further subdivided (see Fig. 3). In
this situation, it is a leaf (terminal) node. The revised parallel quadtree data
structure has a lock flag for each node. It is designed for two purposes: to solve
the lock synchronization problem noted above in the subdivision process and
to solve similar situations in merging processes (connecting the edges in the
leaf nodes of the quadtree data structure).

We can now discuss an outline of the algorithm. At the beginning, all data
structures including the global task queue (GTQ) and the local task queue
(LTQ(i)) for each processor i = 1,. . . , N are initialized. A root task, which
is the intersection of two surfaces, is put into the GTQ. In a general step,
processor i gets a task from LTQ(i) or the GTQ and performs its task
independently. A processor i always gets a task from its LTQ(i) first; if it
cannot find a task there, then it looks for a task from the GTQ. If it cannot get

52 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

Parametric Domain Mapping Surface QuadTree Data Structure

Fig. 3. Parametric surface, subdivision and quadtree.

a task, then it must wait and becomes idle. New tasks generated by processor
i are put into LTQ (i) unless it notices that the GTQ is empty and there is
a hungry processor waiting there. In this situation, new tasks are put into the
GTQ. If a process is in a subdivision step, it must check if its surface patch
is being subdivided or not. If not, it can enter and close the door so that no
other processors can subdivide it. Otherwise it must wait or do something else.
When a processor finishes, it reopens the door and sets a split flag so that other
processors can notice it without subdividing again. In this way, the overhead
of synchronization and contention of tasks in the GTQ is kept small. Fig. 4
illustrates the data structures used in macro-subdivision method. A detailed
implementation is discussed in (Chang, 1990).

‘=TQ

Surface 1 Surface 2

Local Data Structures Shared Global Data Structures

Fig. 4. Data structures of macro-subdivision.

L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69 53

(A): Curve in parametric space L2, after SSI

(B): Corresponding Quadtree Representation

l : denotes a non-vital area

o : denotes a vital area

(i)+, i E { 0, 1,2,3} are vertex names

ei, i E {O,..., 15) are edge curves in leaf nodes

E(002) = e13 : means node (002) contains edge curve e13

Fig. 5. Intersection curve in parametric domain and corresponding quadtree data structure.

3.3. Connecting curve segments

The computation of the subdivision algorithm produces a number of line
segments, that are solutions of triangle/triangle intersections. These curve
segments, stored in the quadtree, must be connected to form the intersection
curve. In this section, we present a parallel solution for curve connecting, that
is a variant of curve tracing using the neighbor following method. The neighbor
following method requires the algorithm to traverse up and down the quadtree
to rind the neighbor of a node. Thus it requires a 8(nr) computation, where r
is the height of the quadtree and n is the number of the leaves where the curve
passes through their corresponding sub-domain. We will refer to an area with
a curve passing through as a vital area; a leaf with a curve passing through is
called a vital leaf, see Fig. 5.

54 L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69

Iteration 0:

CurveList

Iteration 1:

CurveList

Iteration 2:

CurveList

Iteration 3:

CurveList

000002003020022023031200202203220222223231311

E(000) = e15
E(002) = e13
E(003) = e14
E(020) = ell
E(022) = eg
E(023) = elo
E(031) = e12
E(200) = e7

E(202) = es
E(203) = eg
E(220) = e3
E(222) = e,
E(223) = e2
E(231) = e4
E(311) = es

00 02 03 20 22 23 31

WJO) = emel4,el5
E(02) = eg,elo,ell
E(03) = e12
E(20) = %e6,e7

E(22) = el,ez,e3
E(23) = e4
E(31) = es

p-p-p-j

E(O) = e9,elo,ell,e12,e13,e14,els
E(2) = el,e2,%%e5,%,e~
E(3) = es

Fig. 6. Illustration of connecting phase.

Rather than going up and down the quadtree each time we need to find a
neighbor for a node, instead we keep a list of pointers which point to the vital
nodes in the quadtree with the same level. At the beginning of the connecting
phase this list contains the vital leaves in the quadtree. It then constructs a new
list that contains those pointers which are parents of the leaves in the old list.
For each parent node, all the curve segments within the area corresponding to it
are connected. Each time the algorithm goes up one level, it merges (connects)
curve segments and forms a new list. The process proceeds iteratively until it
reaches the root of the tree (see Figs. 5, 6). This procedure can be viewed as
similar to a bottom-up merge sort.

Our solution has the same complexity, 8(nr), as in the sequential neighbor
following approach. In the parallel case, if there are P processors available, then
our solution may achieve nearly linear speed up, i.e. complexity of 8 (m/P).
The details of this algorithm can be found in (Chang, 1990).

L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69 55

(A):Lookahead Tree of Node P (B) Lookahead Tree of Node P
with Level 2 with Level 3

5*5 = 25 grid points 9*9 = 81 grid points
4+16 = 20 bounding boxes

4+16+64=84 bounding boxes

Curve passes at least one child of node P

Fig. 7. Tasks in lookahead subdivision levels.

3.4. Lookahead subdivision algorithm

The lookahead-subdivision algorithm is a hybrid multi-level parallel algo-
rithm that takes advantage of the vector pipeline features of some parallel
machines. One advantage of this algorithm is that the macro-subdivision al-
gorithm can be embedded into the outer level of the lookahead-subdivision
algorithm, and the inner level, the subdivision process, is implemented in a
lookahead manner to take advantage of vectorization 3.

For each surface, a subdivision process computes the surface function at
five grid points in the parametric domain (referred to as grid evaluation) and
computes four bounding boxes. Although we could vectorize this calculation
by implementing vector functions which compute grids and bounding boxes,
the improvement would not be significant since the vector length is much
too short to take full advantage of vector pipeline features. Instead, a strategy
called “lookahead” is used to increase the vector length of the vector functions.

The strategy is based on the following inheritance property: if a curve passes
through a node in the quadtree, it must also pass through at least one node
of its children. Hence, if a node is subdivided then some children will have
to be dealt with later. The lookahead-subdivision algorithm precomputes grids
and bounding boxes in the next subdivision level using vector functions. For
example, in our algorithm, there are 25 grid points and 20 bounding boxes
to be computed if it looks ahead into the next descendent level. Similarly, 81
grids and 84 bounding boxes need to be computed if it looks ahead into the
next two descendant levels (see Fig. 7).

The lookahead feature increases the computation of a subdivision task only

3Vectorization is a process to restructure a program in a form that the compiler can generate
code that takes advantage of vector hardware.

56 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

slightly by taking advantage of vectorization, but there will be significant
overall savings since the algorithm does not need to compute grid points and
bounding boxes in the next lookahead levels. Therefore given the inheritance
property, the speed can be significantly improved. There are limits in the size of
the lookahead tree. First, a large tree might cause a memory overuse problem,
if memory is not carefully managed. Second, the performance of a lookahead-
subdivision method strongly depends on the fraction of the subdivision code
which can be vectorized, the underling system architecture and the lookahead
level. If the lookahead level is too high then the performance of the lookahead-
subdivision can be worse than its counterpart, the macro-subdivision method.
Therefore, the lookahead tree should be kept small. In our implementation, a
lookahead level of 2 or 3 was sufficient to improve significantly the performance
of the lookahead-subdivision algorithm over the macro-subdivision algorithm.
For the detailed complexity analysis of the lookahead subdivision algorithm
and how to choose the lookahead level, see Appendix B. A pseudo code of the
lookahead surface split algorithm is as follows:

Lookahead_Split(s,Qs,d)

/* pseudo code for subdivision algorithm which precomputes the grids

and bounding boxes of its lookahead tree with level d */

SurfacePtr s;

QuadtreePtr 9s;

int d; /* lookahead level */

Initialize and update quadtree data structure of this node(&).

if the corners of this node (sub-surface) have not been computed

c

precompute the grids and bounding boxes of its lookahead

tree with level d and store this information into node

Qs in the quadtree data structure (see Fig. 7).

/* implemented in vectorization code */

1

else I

get its grid and bounding box info from the parent node

of Qs. update bounding boxes of child nodes of 9s.

if the children of Qs are termination nodes then

update corners of the child nodes of Qs.

1
update split flag of the quadtree;

4. Empirical results

We first implemented the macro-subdivision algorithm (without vectoriza-
tion) on a Sequent Balance 2 1000, which is a MIMD 24-processor machine at
the Argonne Advanced Computing Research Facility. Fig. 8 shows the test case,
which represents a common case of surface intersections. The benchmarks for
these tests are summarized in Fig. 9; The results indicates that the performance
of the macro-subdivision algorithm is linearly proportional to the inverse of

L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69 57

-sPKE Pametric Surface l:-

Parametric *face 2:

m
I

Fig. 8. Surface intersection.

the given tolerance as predicted by Proposition 2.4, The results indicate that
speed-up is especially high for up to 16 processors. For 12 processors the speed-
up is about 8. For 16 processors the speed-up is about 9. After 16 processors,
the performance might be a little slower as more processors are added. These
results suggested our approach might be well suited for a 4-processor Cray-2
architecture and S-processor Alliant FX/8 architecture. Implementations were
tested on the Cray-2 at the National Supercomputing Application Center, Uni-
versity of Illinois at Champaign and the Alliant FX-8 at Argonne. We used the
MONMACS parallel programming library developed at Argonne (Lusk, 1987)
to make implementations of the macro-subdivision and lookahead-subdivision
algorithms as portable as possible, On the Cray-2 and the Alliant FX/8, we
first implemented the pure Macro-Subdivision algorithm, and then added the
lookahead features.

Figs. 10 and 11 show the performance comparison of lookahead-subdivision
(level 2, 3) and macro-subdivision with and without vectorization for var-
ious tolerance inputs on the Cray-2 and Alliant FX-8, respectively. The
performance of the lookahead-subdivision method is much better than the
macro-subdivision method with and without vectorization. The speed-up of
the lookahead-subdivision method was up to a factor of 6 in Cray-2 and 32
on the Alliant (showing better than linear speed-up). We conclude that, given
the underlying architectures, our implementations of macro-subdivision and
lookahead-subdivision algorithms are close to the expected theoretical bounds.

It is interesting to note that we can increase the precision tolerance and make
up for the loss of speed by using a proportional number of processors. This gives

58 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

t
Seconds

260 -

250 - 240 - ?

110 - <

100 -

ii -

it -
50 -
40 -

:: -
10 -

e

(a) Performance vs. Tolerance

l : Tolerance 0.1

q : Tolerance 0.01

o : Tolerance 0.001

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22232425

r Speed Up

16 -

15 l : Tolerance 0.1 - (b) Corresponding Speed Up

14 -

l3 _ q : Tolerance 0.01

12 -

11 _ o : Tolerance 0.001

10 -

9

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22232425

Processors

Processors

Fig. 9. Performance of macro-subdivision method - Sequent Balance 21000: Argonne National
Lab (ACRF).

substance to our claim that the trade-off between speed and precision can be
improved by using parallel processing. We also note that for MIMI3 machines,
although an almost linear speed-up can be obtained, in actual implementations
there is an optimal number of processors that achieves the most effective
use of available processors. For example from Fig. 10, we notice that the
second half of processors does not contribute as effectively as the first half

L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69 59

t
Seconds

t
Speed Up

16

34

(a) Performance (Tolerance 0.01)

0 : macro-subdivision

0 : vectorization

. : lookahead level 2

s+ : lookohead level 3

36

34
(b) Corresponding Speed Up

30 -
- 0 : vectorization

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Processors Processors

t
Seconds

t
Speed Up

13

t 9

(a) Pelfonnance (Tolerance 0.1)

12

II 0 : macro-subdivision

10 I\ 0 : vectorization

9 0 : lookahead level 2

* : lookahead level 3

36 (b) Corresponding Speed Up
34

32

30
28

26
24

0 : macro-subdivision

0 : vectorization

22 -

20 -

18 -
16 -
14 -

12 -
10 -

8 -
6 -
4 -
2 7

L 4

1 2 3 4 5 6 7 8 9 I 2 3 4 5 6 1 8 9

Processors Processors

Fig. 10. Comparison of lookahead with macro-subdivision (vectorization) - Alliant FX/8: Argonne
National Lab (ACRF).

of processors. Since surface intersections are the “lowest level” computation
in support of Boolean set operations, in practice we should find the optimal
number of processors, thus freeing any additional processors for independent
tasks. This would make multi-level parallelism very useful in a higher level
computation (such as the intersection of two objects) since we could divide the
processors into several groups of processors, each group working independently

60 L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69

Seconds

(a) Performance (Tolerance 0.01)

t 0 : macro-subdivision .
1.6
1.5

1.4
1.3
1.2

1.1

q : vectorization

0 : lookahead level 2

* : lo&ahead level 3

I 2 3 4 5

Processors

Seconds

1.0

F
(a) Performance (Tolerance 0. I)

3.9

t
0 : macro-subdivision

0 : vectorization

. : lookahead level 2

s * : lookaheod level 3

I I , h

1 2 3 4 5

Processors

F
Speed Up

10 (b) Corresponding Speed Up

0 : macro-subdivision

0 : vectorization

l : Iookahead level 2

6 -
* : lookahead level 3

I I c
1 2 3 4 5

Processors

t
Speed Up

10 -
(b) Corresponding Speed Up

9 -
0 : macro-subdivision

8 -
0 : vectorization

7 - l : lookohead level 2

6 - * : lookahead level 3

5 -

4 -

3 -

2 -

I -

1 2 3 4 5

Processors

Fig. 11. Comparison of lookahead with macro-subdivision (vectorization) - CRAY-2: National
Center for Supercomputer Application (NCSA) .

on different tasks simultaneously.

5. Conclusion

We have shown both theoretically and empirically that parallelism is a fea-
sible approach for solving the speed-precision dilemma in surface intersection.

L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69 61

Although our current study of parallelism is primarily on the SSI context, it
is also possible to utilize our results on other problems in computer aided
geometric design. For example, the curve-tracing technique used in surface
intersection can also benefit from parallelism since we can divide the curve
into curve branches on different regions using the subdivision method and
then trace each curve branch simultaneously, see (Chang, 1991).

As another example, consider the intersection of two solids. For coarse or
middle grain parallel computers, we can feed a pair of surface patches into
each processor and keep all processors as busy as possible, hopefully achieving
a near linear speed-up. Such a strategy is very simple but can be extended
as in this paper. For example, in vector pipe-lined parallel architectures, the
lookahead-subdivision algorithms can provide better than linear speed up. In a
massive parallel computer with thousands of processors multi-level parallelism
might be a better strategy. Our algorithms can be used on the fairly simple
processors used in massively parallel architectures.

Our exploration of parallelism in the design of a new free-from solid model-
ing system is still far from complete. Developing parallel algorithms for MIMD
distributed memory machines is an important issue. MIMD distributed mem-
ory machines are the only type of MIMD machines that are scalable, i.e.
the performance of the method is proportional to the number of available
processors. In addition, their price is far less expensive than serial supercom-
puters. Developing a prototype system that can support Boolean set operations
(union, difference, and intersection) to construct solids from primitives using
multi-level parallel processing techniques is another area for future work.

Appendix A

In the following, we give a lemma and a proposition which state the profile
and complexity of subdivision algorithms using a quadtree data structure. We
will use the following notation:

Notation.
0 c: input tolerance;
l Mi: the curvature bound of surface i (defined in Proposition 2.3);
l Ili: subdivision level (termination level) of surface i;
l Ts,i: time for computing a SSI;
l TSDi: total computation time of surface i in subdivisions;
l TSD: total subdivision time (i.e., TSD, + TSO,);
l T,,: time for computing a parametric function at a grid point; of surface i;
l Tbox: time for computing a bounding box of a sub-surface;
l Tup: time for updating quadtree data structure for a sub-surface;
l Tbbt: time for detecting if a pair of bounding boxes intersects;
l Nbbx: number of bounding box tests in SSI subdivision process;
l Tsdvi: time for subdividing a sub-patch of surface i;
l Nsdvi: total number of subdivision of surface i in SSI;

62 L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69

l Tstartup: time for starting up an subdivision algorithm for SSI;
l Ntasks: number of tasks (pairs of sub-surfaces) added into queue;

l T,,,: time for a queue operation (add/delete);
l T&I time for computing a triangle/triangle intersection;
l Nni: total number of triangle/triangle intersections in a SSI.

Lemma A.1. Given two parametric surfaces which are images under PI and P2
of rectangles in E2, assume both surfaces intersect each other. The computation
time for SSI using the subdivision method (Section 2.3) and a quadtree data
structure is

Proof. For the subdivision algorithm, we first compute the start up time of SSI.
We need to compute the parametric functions Pl and P2 at the four corners of
their rectangular domains; a bounding box for each surface; one bounding box
intersection test; update quadtree data structure operations for both surfaces
and one queue operation. Therefore, the start up time is:

T start = 4 . Te, + 4 . r,, + 2 * Tbt,x + 2 * Gp + Tqop + Tbbt. (5)

For the Surface-Split (subdivision process) in Section 2, we must compute
the following for each subdivision:

1. parametric functions at 5 grid points of a surface;
2. an update to the quadtree data structure for each of four subdivided

sub-surfaces;
3. a bounding box for each subdivided sub-surface.
By the above, the time for each subdivision of a sub-surface of surface i is:

Tsdvi = 5. Tei + 4. (Tbox + Tur).

Total Subdivision Time (TSD) :

(6)

N sdv 1 * Gdvl + Nsdv2 * Gdvz

Total time for bounding box test is:

Nbbt . Tbbt.

The total time for queue operations is the time for the number of tasks
added into the queue plus the time for the tasks deleted from queue. Both are
equivalent. Therefore, the queue operation time is:

2 . Ntasks . Tsop-

By the above, the computation time of SSI using subdivision and a quadtree
data structure can be estimated by

L.C. Chang et al. / Computer Aided Geometric Design 11 (1994) 39-69 63

Tssi = Nsdv 1 . hv I + &dv 2 . &dv2

+ &bt * Tbbt + Ntti * Ttti + 2 . Ntasks . Tqop + Startup

1

2

=
c &vi. [5. Tei + 4. (Tiox + T&)1
i=l 1

+ %bt . Tbbt + Ntti . Ttti •t 2 ’ %asks . Tqop + T,tart . 0

Proposition 2.4. Given two C2 parametric surfaces PI and P2, and a toler-
ance E. Assuming the surfaces intersect, the computation time for SSI using
subdivision method and quadtree data structure has lower bound complex-
ity Q(log4((Mi + &)I&)) and upper bound complexity O(((MI + M~)/E)~),
where MI, M2 are the curvature bounds of surfaces PI and P2, respectively.

Proof. Let n I be the subdivision level for surface PI, and n2 for surface P2; and
nl < n2. The number of rectangular subdomains at the subdivision level for
the two surfaces are 4”’ and 4n* respectively. Both surfaces are approximated
within e/2. By equation (4), we can easily derive the following equations to
compute ni and n2 such that the intersection curve of two surfaces is within
the input tolerance E:

n1 6 lwt(Ml/&), (7)

n2 < logq(Ws). (8)

The number of bounding box tests (Nbbt), subdivisions (NSdV i), triangle/trian-
gle intersections (Ntti), and queue operations (Ntasks) depends on the spatial
orientation , the curvature of two surfaces and the input tolerance E. By
equations (7) and (8), we can compute the lower, practical, and upper bounds

for xdv i, A&, NsOp and Ntti in terms of the curvature of two surfaces and
input parameter E, based on the spatial orientation of the two surfaces.

Best case situation (lower bound)
In this case, the intersection curve passes through only one node at the lowest

subdivision level of each surface. That is, at each level, only one subdivision
occurs for each surface. Thus, if the subdivision level of a surface i is ni, then
NSdV i = ni, which is the lower bound for NSdY i; and the lower bound for Ntti
is 1, since only one computation of a triangle/triangle intersection (TTI) is
needed. The number of bounding box tests at the level below or equal to n1 is
16, otherwise it is 4. Hence by equations (7) and (8)

Nbbt = 16. nl + 4. (n2 - nl)

= 12.ni + 4.n2

Ml + M2
. E

64 L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69

In each level, only one task is added into the queue, hence

By Lemma A. 1,

Tssi= ~N~~“i*[5’T,,+4.(Tbor+~~~)l
1

i=l

+ Nbbt ’ &bt + Ntti ’ %i + 2 . Ntasks ’ &~p + Gtwt

= ~~i*~~.T,,+4-(Tbur+Tup)l}
{ i=l

•k (12’nl +4’n2)‘Tbbt+ l’Ttti+2’nz’T,,,+T,tart,

Using the above arguments, it can be easily shown that there exists a C, such
that

Tssi 3 C ’ log4
M + M2

. E

Therefore,

Worst case situation (upper bound)
This case assumes that both surfaces nearly intersect each other everywhere

(nearly overlap). That is, in each subdivision level, the subdivided surface-
patches of both surfaces will intersect each other. Therefore, for a surface i,
in level 0, one subdivision is needed; in level 1, 4 subdivisions are needed,
and in level 2, 16 subdivisions are needed. By induction, at level yli-1, 4ni-1
subdivisions are needed. Thus,

ni- I

Nsdvi = x4’ = ?f_! < Mil;-l = @(” 1 “‘).
i=O

The total number of pairs of sub-surfaces for triangle/triangle intersection,
therefore, is the product of the number of sub-surfaces in level ni of surface i.
That is,

Ntti = 4”L . 4”2 G !$. $ = M;$fz < (“’ ;“>’

The total number of bounding box tests is:

L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69 65

nl n2-n1

Nbbt = c
16’ + 16”’ . c 4’ < 2 16’

i=l i=l i=l

16”2+1 _ 1 1 16. - 1 =G _

15
’ < UG/d2 _

15
1

a((” yy’).
The number of tasks added into the queue is the same as the number of

bounding box tests in the worst case situation:

N tasks = Nbbt = 0 ((“’ ; M’)2).

By Lemma A. 1 and above arguments, we have

Gsi= kNsdvi*Is.T,, +4*(T,ox+T,p)I { i=l

+ Nbbt . Tbbt + Nti . Ttti + 2 . Ntasks . T&p + Start

Observation 2 (Practical bound). If we assume that in each subdivision step,
half of regions are eliminated by bounding box tests then the complexity is
0((MI + M~)/E)). This can be shown as follows.

By the same principle as in the worst case,

n,-1

Nsdvi = C’
(Mi)1’2

2’ = 2% _ 1 g - _

&
i=O

1 = @((” ; M’)lii).

The number of bounding box tests at level 1 is 16, at level 2 it is 64 (162 f i),

at level 3 it is 1 63 . & and so on. By induction, the total number of bounding

box tests from level 1 to 111 is Cy& 16’/4’-‘, and the total number of bounding

box tests from level ~11 + 1 to n2 is 16 . 4”1-1 CyL<“’ 2’. Therefore,

l&t = 2 16j
n2-ni

i=l

.-& + 16.4”1-’ c 2’
is1

< 1624’
i=l

66 L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69

The number of tasks added into queue is less than the number of bounding
box tests and thus

N c,op 6 Nbbt = 8

The number of uneliminated regions in level n 1 of surface 1 are 2”‘. Similarly,
the number of uneliminated regions in level n2 of surface 1 are 2’2. Therefore,

Ntti = 2”’ . 2”2 < wm42)1’2

&
= e(” ; “‘).

By Lemma A.1 and the above computation,

Tssi = O(" f “‘)a 0

Appendix B

In this appendix, we show why the lookahead-subdivision method can out-
perform the macro-subdivision method with the help of an appropriate looka-
head tree and how to choose an appropriate lookahead level. We define three
entities:

1. lookuhead(d) tree is a complete quadtree with height d (see Fig. 7);
2. lookahead subdivision time is the total time for computing all the nec-

essary subdivision tasks for a lookahead tree in the macro-subdivision
or lookahead-subdivision algorithm;

3. a lookahead-split (d) job is a subdivision job with lookahead level d.
According to these definitions, a lookaheud(1) subdivision process is a process
which subdivides a node in the quadtree by using the macro-subdivision or
lookahead-subdivision method. Therefore, we can view the macro-subdivision
algorithm as a special case of the lookahead-subdivision algorithm with looka-
head level 1.

In what follows, we give a derivation of the complexity of a lookahead
subdivision process which uses the lookahead-subdivision algorithm and the
macro-subdivision algorithm with vectorization.

Let
T, = the time required to perform an operation in scalar mode;
TV = the time required to perform an operation in vector mode;
KS = vector speed up (T,/T,) of the underlying machine;
N(d) = the total number of operations of a lookahead-split (d) task;
F, (d) = the fraction of operations of a lookahead-split(d) task computed
in sequential mode;
F, (d) = the fraction of operations of a lookahead-split (d) task computed
in vector mode;
Tbg (d) = the time required to perform all bounding box computation and
grid evaluations in lookahead-split (d);

L.C. Chang et al. / Computer Aided Geometric Design I1 (1994) 39-69 61

TuP (d) = the time required to perform quadtree update operations in a
lookahead-split (d) ;
T,, (d) = the time required to perform a lookahead subdivision process
using macro-subdivision method;
Tmsv (d) = the time required to perform a lookahead(d) subdivision process
using macro-subdivision method with vectorization;
T&j = the time required to perform a lookahead(d) subdivision process
using lookahead method;
SDV(i) = total number of subdivision tasks needed to perform in the ith
level of a lookahead tree with level d.

By definition, VS = Ts/Tv and F,(i) = 1 -F,(i), i = l,...,d.
For the macro-subdivision method, we have

T’,(l) = G,(l) + T,,(l) = N(l) x r,.
For the macro-subdivision method with vectorization

Tm,(l) = Tbs(1) + T,,(l) = N(1) x&(l) x Tv + N(1) x F,(l) x Ts

= N(1) x F,(l) x T, + N(1) x (1 -F,(l)) x T,

= N(1) x F,(l) x ;; + N(1) x Ts x (1 -F,(l))

Therefore the speed up for vectorization is

Speed Up = p((\)) =
1

“W [l- (VS- l)/VS) X F”(l)]’
(9)

One can view these results as the vectorization version of Amdahl’s law
(Levesque, 1989). It shows that speed up for vectorization is related to the
vector speed-up of the underlying machine and the fraction of vectorizable
code.

In the following, we show why the lookahead-subdivision method can pero-
form better than the macro-subdivision method with vectorization. Both meth-
ods utilize vectorization method for computing all bounding boxes and grid
evaluations in lookaheadsplit (d) and lookaheadsplit (1)) respectively. Con-
ceptually, the lookahead-subdivision method has more data for vectorization
than the macro-subdivision method; while the quadtree update time are about
the same since they are done in scalar mode.

For the lookahead method, lookahead subdivision time is

L(d) = T,,(d) + eSDV(i) x T,,(d).
i=l

For its corresponding macro-subdivision method with vectorization

68 L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69

i=l

= &w x T&(l) + -&DUO x T&(l).
i=l i=l

We want to choose lookahead level (d) so that the performance of the looka-
head version is better than the macro version. That is,

T,(d) G L”(d).

By the above equations, we have

i=l

T,

By definition, we have

d

=s c
Ts

SDV(I’) x N(1) x F”(1) x VS. (11)
i=l

F”(d) 3 K(l), N(d) 2 N(l).

Both N(d) and cy= 1 SDV(i) are exponential functions. However, N(d)
grows faster than the sum in most situations when d becomes large. For small
d, the above equation is satisfied, since the ratio N (d)/N (1) is much smaller

than Cf=, SDV(I’).

References

Bamhill, R.E., Farin, G., Jordan, M. and Piper, R.B. (1987), Surface/surface intersection,
Computer Aided Geometric Design 4, 3-16.

Casale, MS. and Stanton, E.L. (1985), An overview of analytic solid modeling, IEEE Comput.
Graph. Appl. 5, 45-58.

Chang, L.-C., Bein, W.W. and Angel, E. (1990), Parallel algorithms for surface intersection, Tech.
Report No. CS 90-7, Department of Computer Science, University of New Mexico.

Chang, L.-C. (1991), Parallel algorithms for surface intersection for free-form solid modeling
system, Ph.D. Dissertation, Department of Computer Science, University of New Mexico.

Cracker, G.A. and Reinke, W.F. (1987), Boundary evaluation of non-convex primitives to produce
parametric trimmed surfaces, Computer Graphics 2 1, 129- 136.

Farouki, R.T. (1987), Trimmed-surface algorithms for the evaluation and interrogation of solid
boundary representations, IBM J. Res. Develop 31, 314-334.

Filip, D., Magedson R. and Markot R. (1986), Surface algorithms using bounds on derivatives,
Computer Aided Geometric Design 3, 295-3 11.

Herzen, B.H. (1989), Applications of surface networks to sampling problems in computer graphics,
Ph.D. Dissertation, California Institute of Technology, Computer Science Department, Caltech-
CS-TR-88-15.

Herzen, B.V., Barr, A.H. and Zatz, H.R. (1990), Geometric collisions for time-dependent
parametric surfaces, Computer Graphics 24, 39-48.

Hoffmann, CM. (1989), Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, Los
Altos, CA.

L.C. Chang et al. / Computer Aided Geometric Design II (1994) 39-69 69

Houghton, W.G. and Emnett, R. (1985), Implementation of a divide-and-conquer method for
intersection of parametric surface, Computer Aided Geometric Design 2, 173-183.

Kala, D. and Barr, A.H. (1989), Guaranteed ray intersections with implicit surfaces, Computer
Graphics, 23, 297-306.

Lane J.M. and Carpenter L.C. (1979), A generalized scan line algorithm for the computer display
of Parametrically defined surfaces, Computer Graphics and Image Processing 11, 290-297.

Lane, J.M. and Riesenfeld, R.F. (198 1), A theoretical development for the computer display and
generation of piecewise polynomial surfaces, IEEE Trans. Pattern Anal. Mach. Intel. 2, 35-46.

Levesque, J.M. and Williamson, J.W. (1989), A Guidebook to Fortran on Supercomputers,
Academic Press, New York.

Lusk, E. and Overbeek, R. (1987), Portable Programs for Parallel Processors, Holt, Rinehart and
Winston, New York.

Pratt, M.J. and Geisow, A.D. (1986), Surface/Surface intersection problems, in: J.A. Gregory,
ed., The Mathematics of Surfaces, Oxford University Press.

Wilson, P.R. (1988), Solid modeling research and applications in the U.S.A., in: Wozny, M.J.,
McLaughlin, H.W. and Encamacao, J.L., eds., Geometric Modeling for CAGD Applications,
North-Holland, Amsterdam.

Wolfe, R.N., Wesley, M.A., Kyle, J.C., Grater, J.F. and Fitzgerald, W.J. (1987), Solid modeling
for production design, IBM J. Res. Develop. 31, 277-295.

