CHAPTER 1

THE USE OF GALIB

GAlib is a C++ library developed by Matthew Wall (see [21])at the Massachusetts
Institution of Technology designed to assist in the development of genetic algorithm
applications. The library contains numerous classes that offer functionality and flexi-
bility in the design of optimization applications with genetic algorithms. The library
includes default genetic algorithm models, genome types, and genetic operators for
the quick creation of simple applications, and the ability to customize GAlib for more
complicated optimizations. This library was programmed so that it may be used on
a variety of compilers on many platforms. The library has been used successfully on
DOS/Windows, Windows NT/95, MacOS, and UNIX systems. GAlib was designed
to work with Microsoft Visual C++, Borland C+4 and GNU compilers, as well as
others. Our applications were written under the Microsoft Visual C++ environment
and all examples given in this paper were written in that environment.

GAlib supports several different models of genetic algorithms. The simple GA
is the standard genetic algorithm, where after each generation, the population of
possible solutions is completely replaced by the mutation and crossover of the previous
generation. The incremental and steady state genetic algorithms both replace only
a portion of the population with each generation. The deme GA evolves multiple
population and migrates individuals from one population to another. With this GA
model, GAlib can run on parallel processors, evolving each population on a separate
processor. It is also possible to develop a custom GA to suit the purposes of an

application.

2

Each of these GA types is simple to implement and gives a great deal of freedom
in their operation. A variety of algorithm termination methods, selection methods,
random number generators, and statistics are available to choose from. Most of
these features may be customized as well. Also, crossover and mutation probabilities,
population overlap, and population size are customizable quantities.

Any datatype in C++ may be used to create a genome type. GAlib includes
several of the most common genome types. These include one-dimensional, two-
dimensional and three-dimensional arrays of binary elements, and 1-D arrays of real
or character valued elements. In addition to these, are lists, trees, 1-D, 2-D, and 3-D
arrays, all of which are templates and allow the programmer to select any valid C++
data type. All the arrays may be set to any desired length, and the trees and lists
have dynamic sizes. Each of these genome types has built-in initialization, crossover,
mutation and comparison methods, which can be customized by the programmer.
The only routine that must be coded by the programmer is the objective function.
This is the function that evaluates an individual from the population and calculates
a fitness score.

The versatility and ease of GAlib makes it a useful tool for implementing genetic
algorithms. It is versatile enough to apply to complex optimization problems through
customization, yet still simplifies the work. For simple genetic algorithm applications,
little programming is required. Also, because GAlib includes a large variety of genetic
algorithm and genome types and is written with a hierarchical structure, it is simple

to modify software already written with GAlib to perform new tasks.

General Overview
When programming using GAlib, one will work primarily with two classes: a
genome class and a genetic algorithm class. A genome represents a single individual

in the population of solutions. The genetic algorithm defines how the solution will

3

be evolved. In addition to defining these two classes, an objective function is needed.
GAlib supplies the two classes, but the objective function must be programmed.
If the classes supplied by GAlib are inadequate to the task at hand, they may be
customized, or the programmer may develop his or her own implementations.

The three necessary steps to developing an application using GAlib are to:

e define a representation

e define the genetic operators

e define the objective function

GAlib includes many examples, built-in operators, and genome representations
to aid in the first two steps, but the objective function must be implemented by the
programmer. Once these three steps have been completed, the genetic algorithm can
begin its search for a solution.

A single object is used to represent a possible solution to an optimization prob-
lem. The genetic algorithm will create a population of this structure that is supplied.
Then, the genetic algorithm will operate on the population in an attempt to evolve
the best solution. The data genome structure used by GAlib is called a GAGenome.
The GAlib library contains genomes represented as an array, a list, a tree, and a string
of binary bits. These genome types are derived from the class GAGenome and a data
structure class. For example, the class GATreeGenome class, which represents a tree
structure, inherits from the class GAGenome and the class GATree. The programmer
may choose from one of these built-in genomes or if none of GAlib’s available genome
types will work as a representation of a solution to the problem at hand, the pro-
grammer may develop his or her own GAGenome type. The programmer must write
the new type inherited from the class GAGenome and his or her own data structure
class. This programming style is the most cumbersome aspect of GAlib and described

in detail later.

4

In addition to the genome types available, GAlib offers a selection of genetic
algorithm models to choose from. The basic types of genomes included are the simple,
steady-state, and incremental genetic algorithms. These GA types inherit from the
class GAGeneticAlgorithm. They differ from each other in the methods that new
population members are created and replace the old population members.

A properly implemented genetic algorithm will be capable of performing local
searches as well as global searches for the best solution to an optimization problem. A
feature of GAlib is that it is simple to modify the parameters of the genetic algorithm

in order to find the best conditions for the search.

Overview of the Genetic Algorithm Object

The genetic algorithm object controls the process of evolution. It determines
which individuals to mate, which to replace, and which to survive. It also keeps track
of statistics and determines when to stop the evolution. The genetic algorithm follows
a series of steps. First, the population is initialized. Next, for every generation until
the termination requirements have been met, individuals are selected for mating,
the crossover is performed, the offspring are mutated, and then inserted into the
population. The programmer selects the requirements for termination. He or she can
choose to terminate after a specified number of generations, once a certain fitness
score has been achieved, or by a measurement of the population convergence. The

programmer may also write a customized termination function.

Overview of the Population Object
The population object contains all the genomes making up the population. The
population object keeps track of statistics about the population as well. It keeps
track of the best solution, the average fitness, the deviation and other metrics. The

population object also maintains the selection method used to select the individuals

to mate.

Overview of The Genome Object

The genome object has three primary operators used in the evolution of solu-
tions. The initialization operator inserts genetic material into the genome to initialize
the evolution. The mutation operator changes a portion of the genetic material to
generate a new solution. The crossover operator takes two genomes and combines
them to form a new genome. GAlib has defaults for each of these operators, but the
programmer can customize them to apply to the problem at hand.

The initialization operator is called at the beginning of the genetic algorithm.
It initializes the genome with new genetic material. Instead of creating new genome
objects, it inserts the genetic material into the genome data structure. From this
genetic material, the GA will evolve the solutions of the optimization problem. The
genome initialization function is called by the initialization operator in the population
object. By default, this calls the initialization operator of each genome, but this can
be customized.

The mutation operator defines how a genome is mutated to produce a new so-
lution. The operator should be able to mutate to obtain new genomes local to the
current solution as well as those which are distant from the original. It should be
able to introduce new genetic material into the genome and modify existing material.
Mutation operators act on different data types differently. For example, mutating an
array structure should change a specified value in the array. Mutating a tree should
change the structure of the tree as well as the data stored in the tree. It may be
necessary to define several different forms of mutation for a single application.

The crossover operator takes two parent genomes and combines them to form a
child genome. The crossover, like the mutation operator, should be specific to the data

type in the genome. The crossover may also be dependent on the specific problem as

6

well. For example, the traveling salesman problem requires that the genome maintain
a permutation of all cities in the genome. The crossover used in the genetic algorithm
must sustain this property in the new children generated.

In addition to these three operators, the programmer must create the objective
function, which is called to calculate a fitness score for each member of the population.
This function is the only portion of the genetic algorithm that must be programmed.
A comparator may also be included. This is used to measure the difference between
two members of the population and is used for some statistical measures kept by
GAlib. The comparator is not a required function.

For most applications, the supplied genome types are more than adequate, but
it is a simple process to write one’s own genome type. In general, it is not necessary
for GAlib to know the meaning of the contents of the genome. GAlib is written with
tremendous generality, so any genome type, custom or otherwise, can be used with
any genetic algorithm type.

The genetic algorithm takes care of when to clone the population, perform
crossovers, mutations, initializations, etc. All of these operations are performed via

the genome member functions.

Implementation

Figure 1 shows an example of a program written with GAlib. To implement a
GA using GAlib, first a genome must be declared. This is done on line 3. Notice that
the objective function is passed as a parameter to the constructor. The objective
function is passed to the genome so that it can be called from the genome when
it needs to be evaluated. Once a genome has been created, declare an instance of a
genetic algorithm object, passing the genome to its constructor. The genome declared
here is not used in the genetic algorithm itself, but instead a population of genomes

is cloned from it. The GA function “evolve”, line 5, can then be called to initiate and

/*1%/ void main()
/¥2x/ {
//Declare a single genome object, which will be duplicated by the GA.
/*3%/ GA1DBinaryStringGenome genome(length, Objective);
//This one is a simple GA with a population of 1-D binary
//strings.
/*4x/ GASimpleGA ga(genome); //Declare the genetic algorithm.
//Evolve a solution by calling the evolve member function.
/*5%/ ga.evolve();
//Print the results after evolution has completed by calling
//the statistics function.
/*6%/ cout << ga.statistics() << endl;
/*Tx/ }
/*8%/ float Objective(GAGenome &)
/*9%/ {
//Write the code for the appropriate objective function here.
/*10%/}
Figure 1: Structure of a Simple Program Using GAlib
run the GA.

In this example, the genome selected is a one-dimensional string of binary values.

The length of the string is determined by the value of the variable length. The

genetic algorithm object used in this application is a GASimpleGA. This is a GA that

completely replaces the population each generation with a new population created by

the crossover and mutation operators. One may also wish to set various parameters

that change the operation of the GA, as in Figure 2. These member functions of

GA types set the size of the population, the number of generations to evolve and

the probabilities for mutation and crossover respectively. The “minimize” member

function switches the optimization from the default maximization to a minimization.

Writing the Objective Function

The objective function is the only place where the programmer codes in the

ga.populationSize (popsize) ;
ga.nGenerations(ngen) ;
ga.pMutation (pmut) ;
ga.pCrossover(pcross) ;

Figure 2: Setting parameters for a GA

/*1x/ float Objective(GAGenome & g)
/*2x/ {
//Type-casting the GAGenome to a GA1DBinaryStringGenome.
/*3%/ GA1DBinaryStringGenome & genome = (GA1DBinaryStringGenome &) g;

/*5%/ float score = 0.0;

//This for-loop sums all the ones in the genome in score
/*6%/ for(int i =0; i<genome.length(); i++);
/*Tx/ score += genome.gene(i); //The member function gene returns the
//value in the string at location i.

//Return the sum of ones as the final objective score.
/*8x%/ return score;

/*9%/ }

Figure 3: Example of an Objective Function

meaning of data stored in the genome. The objective function returns a floating-
point value, which is the objective score for the genome. The function is passed the
genome to be evaluated as an instance of the generic class GAGenome. GAlib requires
this so that the function header matches with the library. All genomes must inherit
from the class GAGenome and the genome must inherit from a data type class as well
in order to implement the data type as a GAlib genome. This is true for all genome
types included with GAlib. Because the genome passed to the objective function is
of the generic GAGenome class, it must first be type cast into the previously defined
genome class before the objective score can be calculated. Figure 3 is an example
of a simple objective function. The function gives higher objective scores to those

genomes with more ones.

9

The type cast shown in Figure 3 (line 3) creates a new variable genome of type
GA1DBinaryStringGenome, which now contains the correct type for the genome
to be evaluated. After this type casting, the data and specific member functions
of the genome can be accessed to calculate its score. The gene function of the
GA1DBinaryStringGenome called on line 7 returns the value at the given location in
the string. The length function returns the length of the string.

The objective function can be defined as a static member of a custom genome
class, as described in detail later, or it can be written independently of the genome
and passed to the genome constructor, which is the most common and easiest method.
It can also be set with the evaluator member function of the genome class, if it should

change during the evolution.

Genetic Algorithm Objects

GALlib is packaged with a selection of genetic algorithm types. The available GA
types are the GASimpleGA, the GASteadyStateGA, the GAlncrementalGA, and the
GADemeGA. Each of these GA types and any customized GA inherit from the class
GAGeneticAlgorthm.

The GAGeneticAlgorithm class is an abstract class and can therefore have no
instantiations. This class keeps track of GA statistics (number of crossovers and mu-
tations, best, mean, and worst in each generation, etc.). It also defines the terminator
function, which stops the evolution and parameters such as crossover and mutation
probabilities.

The functions “pCrossover” and “pMutation” can be called to set and get the
probabilities for crossover and mutation. The function “population” is called to set
and get the population and the function “nGenerations” can be called to set and get
the number of generations to evolve before completing the evolution. The “done”

function returns true if termination requirements for the GA have been met and false

10

if they have not been met. the function generation returns the current generation the
GA is evolving.

To control the evolution of the GA, the programmer can invoke the functions
“evolve,” “initialize,” and “step.” “evolve” first initializes the GA, then evolves the
population generation by generation until the termination requirements have been
met. “initialize” resets the evolution and initializes each member of the population.
“step” completes a single generation of the evolution.

The GASimpleGA is the simple GA as described by Goldberg (see [7]). Every
generation the current population is completely replaced by the children generated
by the crossover and mutation operators. The elitism flag can be set for this GA type
with the “elitist” function. This flag causes the GA to always keep the single best
individual in the population and inserts it into the next generation.

GASteadyStateGA uses an overlapping population model. The GA creates a
population of individuals with the crossover and mutation operators. It then merges
this new population with the previous population and removes the worst individuals
to return to the original population size. By setting the “pReplacement” parameter,
the percentage of the population to be replaced each generation is set. The “nRe-
placement” parameter specifies the exact number of individuals to be replaced. Only
one of these parameters can be set at one time. Setting one overrides the other.

The GAlncremental GA also uses an overlapping population model, but the over-
lap is very small; one or two new individuals are added to the old population each
generation. These new members replace the individuals with the worst score by de-
fault, but they can be set to replace individuals based on custom requirements. The
number of children generated each generation can be set by the “nOffspring” function
to one or two. The default is two.

GADemeGA evolves populations in parallel and migrates individuals between

them. Each of the separate populations evolves with a steady-state GA as described

11

above, but each generation, some individuals migrate between populations. The
function “nMigration” determines the number of the best population members of
each population to migrate. The “nReplacement” or “pReplacement” functions are
used to specify the population to be replaced in each generation of the steady-state

genetic algorithms as described above.

Genome Objects

Most problems to be optimized by a genetic algorithm can be contained in the
genome types included with GAlib. These include one, two and three-dimensional
binary strings and template arrays, a template list, a template tree, a character array,
and a real array. Each of these genomes is implemented as a class within GAlib,
inheriting from the abstract class GAGenome.

The genetic operators for mutation, crossover, initialization, comparison, and
scoring are all passed one or more objects of type GAGenome. These GAGenomes
must then be type cast into the correct specific genome class so that the data stored
in the genome can be accessed. The genomes are passed as the general GAGenome
because it facilitates the customization of GAlib.

The functions “mutator,” “crossover,” “initializer,” “comparator,” and “eval-
uator” all specify the function used to perform their named operations during the

7y

genetic evolution. The functions “mutate,” “initialize,”

compare,” and “evaluate”
call the functions set by the above. The function “sexual” returns a pointer to the
crossover function, but only the genetic algorithm object is responsible for calling
the crossover function. The “clone” function allocates memory for a new instance of
the genome and the “copy” function replicates the contents of a genome into another
genome. Because the genetic algorithm object performs the genetic operations and
creates the population, it is usually unnecessary to call these functions directly. They

are, however, useful while testing the implementation of newly designed operators

12

and genomes.

The function “score” returns the fitness score of a genome, and the insertion
operator (<<) is defined to output the contents of the genome. With these two class
members, the final result of an evolution can be output by displaying the best genome
score and contents.

The classes 1DBinaryStringGenome, 2DBinaryStringGenome, and 3DBinaryS-
tringGenome contain arrays of binary elements. A single element can be read or
modified with the “gene” function. The “set” and “unset” members are used to
modify a range of elements in an array.

GA1DArrayGenome<T>, GA2DArrayGenome<T>, and GA3DArrayGenome<T>
are all arrays of the supplied template type. Any class or type may be used as the
template class as long as the comparison operators == and != are defined, as well
as the assignment operator = and a copy constructor. This makes these array types
very versatile. Many common optimization problems can make use of these genome
types. The “gene” function allows access to the elements of the genome, as it does
for the binary genomes, and the “swap” function is also defined for exchanging two
elements in the array.

The array and binary string classes all have user defined dynamic lengths. The
functions “length,” “depth,” and “width” set the size of the array in the first, second,
and third dimensions respectively.

Also included with GAlib is the GAListGenome<T>. This genome type incor-
porates the flexibility of the template as well. The list is circular and doubly linked.
The list can be traversed and modified using the “current,” “head,” “next,” “prev,”
and “tail” functions. The “warp” function allows access to a specified location in the
list. “destroy” and “remove” both remove nodes from the list. However, “remove” re-
turns a pointer to the item and does not free the memory used by the item. “destroy”

completely removes the item from memory. The “insert” function can be called to

13

insert an item into the list and the “swap” function exchanges two items in the list.

The GATreeGenome<T> can represent and manipulate a tree with nodes of any
valid type or class. The children of a single node are kept as a circular linked list with
the eldest child at the head of the list. All children have a pointer to the parent and
the parent node has a pointer to the eldest child. A tree has only one root. A variety
of operators have been supplied for traversal of the tree and insertion and deletion of
nodes.

All of the above classes are packaged with default crossovers and mutators. Some
also have default initializers and comparators. For one-dimensional arrays, the pro-
grammer can choose from one-point and two-point crossovers. The one point crossover
is also available to the list genome. In multidimensional arrays, the genome matrix
is divided into quadrants. These quadrants are merged with quadrants from another
parent to create a new child. The tree genome crossover swaps a subtree between two
parents.

Mutators for the arrays and list swap two random elements. The tree genome
swaps two subtrees within one genome to form a new genome. The initializer is
defined for the binary strings. The initializer uniformly selects ones and zeros for
each element. A comparator is also defined, and this counts the number of items that
differ between the two genomes being compared.

Of course, if any of these genomes or operators do not fit the problem at hand, it
is possible to establish operators and genomes of one’s own design. For most problems,
however, the supplied genomes are adequate. In many cases, though, it is desirable

to write one’s own genetic operators.

Additional Objects
Along with genetic algorithm classes and genome classes, GAlib includes other

classes used in the optimization process. A GAStatistics object keeps track of various

14

statistics throughout evolution; the GAPopulation object contains the populations
evolved and the GAScalingScheme and GASelectionScheme control how the GA scores
are scaled and how genomes are selected to mate respectively. There is also a set of

random number generators included with GAlib.

Customizations to GAlib
To use GALlib to its greatest capacity, it is necessary to understand how GAlib
can be customized. Each of the genetic operators and the genome itself can be made
to order. Even a genetic algorithm object can be customized. The following section

explains further how the customization process works with GAlib.

Customizing the Initialization Method

For most of the genome types, and always when a new genome is created, the
programmer must supply a custom initialization function. An initializer function is
passed an object of GAGenome class, which must be type cast into the appropriate
genome type. The function must be void and therefore returns nothing. Initializers
are associated with a genome by using the initializer member function of the genome
object. Figure 4 is an initializer function that assigns random floating-point val-
ues between “min_weight” and “max_weight” to each member of the genome. The
genome inherits from class CArray, a dynamic array class packaged with the Microsoft
Foundation Class Library under Microsoft Visual C++.

The initializer was used to assign random weights to a neural network in the
Brain Evolver program. The initialization function should only assign values to the
genome. The genetic algorithm object has already allocated the memory for the

genome before the initializer is called.

15

/*1x/ void CArrayGenome::Init(GAGenome & g)
/¥2x/ {

//Type-casting the GAGenome to a CArrayGenome.
/*3%/ CArrayGenome & genome = (CArrayGenome&) g;
/*4x/ int i;

/*5x/ genome.SetSize(struct_size); //Sets the dynamic CArray’s size.

//Initialize each element of the array to a random value.

/*6x/ for(i=0; i<struct_size; i++)
/*T*/ genome [i] = GARandomFloat(min_weight, max_weight);
/*8%/ }

Figure 4: Example of an Initializer Function

Customizing the Mutation Method

Often times, one will desire to implement a custom mutator. Mutations may
be dependent on the problem, and it may be desirable to have more than one type
of mutation occurring during the evolution. The mutator function is passed two
parameters: the genome as a GAGenome, which again, must be type cast, and the
mutation probability as a floating point. It is up to the mutator how this probability
is interpreted. The mutator should return an integer value as the count of the number
of mutations that have occurred. Use the genome member function mutator to assign
the custom mutator for use in the optimization.

The mutator in Figure 5 was also used in the program Brain Evolver. It mutates
the weights of the incoming edges connected to a random node in the network by
adding a random float between the “min weight” and “max weight” values (lines

9-11). The genome, as before, inherits from the CArray class.

Customizing the Crossover Method

As with the mutator, occasionally a programmer will want to define his or her

16

/*1%/ int CArrayGenome::Mutate(GAGenome& g, float pmut)
/*2x/ {

//Type-cast GAGenome into CArrayGenome.
/*3%/ CArrayGenome & genome = (CArrayGenome &) g;

//Use a random number to test if the genome should be mutated.
//Mutation should only occur with probability pmut.
/*4x/ if (pmut<=0 || GARandomFloat() >= pmut)

/*5%/ {
/*6x/ return 0;
/*¥T*/ }
/*8%/ int node, ij;

//Pick a random node from the neural network to mutate
/*9%/ node = GARandomInt (0, max_nodes - 1);

//Mutate all the incoming connections to the random node

//by adding a random number to their weights.
/*10%/ for(i=connection_start[node]; i<=connection_finish[node]; i++)
/*11x/ genome [i] = genome[i] + GARandomFloat (min_weight, max_weight);

/*12%/ return 1;
/*13%/}

Figure 5: Example of a Mutator Function

17

own crossover method. The crossover function receives four parameters: the two
parents and the two children. The parents are passed as GAGenome objects, and the
children as GAGenome pointers. All of these must by type-cast. The crossover should
be defined so that either one or two children can be generated. The function should
return an integer, the number of children created, which is always one or two. If one
of the GAGenome pointers is nil, the crossover should not try to generate a child
at that pointer. The children have already been allocated, so the crossover function
does not need to create memory for the new children.

The crossover in Figure 6 takes genetic material from one parent and inserts it
into the other to create a new child. This is a one-point crossover, where a single
location in the parent strings is selected at random. Genetic material from parent
one (mom) and parent two (dad) are inserted into the two children. Child one (bro)
gets the material in mom to the left of the crossover location and the material in dad
to the right of that location. Likewise, child two (sis) gets material to the left of the
crossover point in dad and to the right of the location in mom.

Notice that the function tests to see if the variables “c1” and “c2” is nil before
attempting to crossover and create a new child (lines 11 and 20). Also notice that the
variable “nc” keeps track of how many children are created and its value is returned

(lines 4, 13, 22 and 29).

Creating a Custom Genome Class
A programmer may derive his or her own genome class from a pre-defined data
object. In Figure 7 and Figure 8, an example showing the definition of the CAr-
rayGenome class, the class inherits from CArray, the data object, and GAGenome.
All custom genomes must inherit from GAGenome.
The constructors and “copy” function should be written as in Figure 7 and

Figure 8. The programmer must insert the correct name of the custom genome and

18

/*1%/ int CArrayGenome::Cross(const GAGenome & pl, const GAGenome & p2,
/*2%/ GAGenome * cl, GAGenome * c2)

/*3%/ {
/*4x/
/*5%/

/*6x/
/*T*/

/*8%/
/*9%/

/*10%/

/*11x/
/*12%/
/*13%/
/*14x/

/*16%/
/*16%/
/*17*/
/*18%/
/*19%/

/*20%/
/*21x/
/*22%/
/*23%/

/*24x/
/*25%/
/*26x/
/*27*/
/*28%/

/*29%/
/*30%/}

int nc = 0; //Number of new children counter.

int i, j, cross;

//Type-casting GAGenomes into GA1DArrayGenomes for the parents.
CArrayGenome & mom = (CArrayGenome &) pl;

CArrayGenome & dad = (CArrayGenome &) p2;

//Type-casting GAGenome * into GA1DArrayGenome * for children.
CArrayGenome * bro = (CArrayGenome *) cl;

CArrayGenome * sis = (CArrayGenome *) c2;

//Select the location to crossover with the two parents.
cross = GARandomInt (1,mom.GetSize()-2);

//Check if bro is nil before he gets the genetic material.
if(c1)
{
nc++; //Increment number of new children.
bro->copy (mom) ; //Copy mom’s genetic material into bro.
//Insert the selected genetic material from dad into bro.
for(i=cross;i<mom.GetSize () ;i++)
{
(*bro) [i] = dadl[il;

//Check if sis is nil before she gets the genetic material.
if(c2)
{
nc++; //Increment number of new children.
sis->copy(dad); //Copy dad’s genetic material into sis.
//Insert the selected genetic material from mom into sis.
for (i=cross;i<mom.GetSize () ;i++)
{

(*sis) [i] = mom[i];

}
//Return the number of children generated.
return nc;

Figure 6: Example of a Crossover Function

19

/*1x/ class CArrayGenome

/*2x/ public CArray<int, int>,

/*3%/ public GAGenome

/*4x/ {

/*5%/ public:

/*6x/ GADefineIdentity("CArrayGenome", 201);
//Declaration of genome operators and evaluator

/*7T%/ static void Init (GAGenome&) ;

/*8x/ static int Mutate(GAGenome&, float);

/*9%/ static float Compare(const GAGenome&, const GAGenome&) ;

/*10%/ static float 0Objective(GAGenome&) ;

/*11*x/ static int Cross(const GAGenome&, const GAGenome&,

/*12x/ GAGenome*, GAGenomex) ;

//Constructor that assigns the initializer, mutator,
//crossover, comparator, and objective functiomns.

/*13%/ CArrayGenome() ;

//The copy constructor.
/*14x/ CArrayGenome (const CArrayGenome& orig) { copy(orig); }

//The destructor member function.
/*15%/ virtual “CArrayGenome() {3}

//Definition of assignment operator =.
/*16x/ CArrayGenome& operator=(const GAGenome& orig);

//The clone function which allocates memory for a new genome
/*17*/ virtual GAGenome* clone(CloneMethod) const;

//The copy function duplicates the contents of a genome.
/*18%/ virtual void copy(const GAGenome& orig);

//Declare any other member functions and variables here.

/*19%/};

Figure 7: Example of a Custom Genome Class Header

20

/*1x/ CArrayGenome: :CArrayGenome() : GAGenome(Init, Mutate, Compare)

/*2x/ {

/*3%/ crossover(Cross) ;
/*4x/ evaluator(Objective) ;
/*5%/ }

/*6%/ CArrayGenome& CArrayGenome::operator=(const GAGenome& orig)
/xTx/ {
/*8x/ if(&orig !'= this) copy(orig);

/*9%/ return *this;

/*10%/}

/*11%/GAGenome* CArrayGenome: :clone(CloneMethod) const
/*12x/{

/*¥13%/ return new CArrayGenome(*this);

/*14x/}

/*15%/void CArrayGenome::copy(const GAGenome& orig)
/*16x/{
/*17%*/ GAGenome: :copy(orig) ;

/*18x/ CArrayGenome& new_genome = (CArrayGenome&) orig;
/*19%/ SetSize(new_genome.GetSize());
//The Copy member of CArray copies the contents of the array.
/*20%/ Copy(new_genome) ;
/*21%/3}

//Code genome operators, objective function, etc.

Figure 8: Example of a Custom Genome Class Implementation

21

copy the data by the appropriate method for the genome’s datatype in the copy
function. The “clone” function and assignment operator (=) also must be defined.
The genetic algorithm object uses the “clone” function to allocate memory for new
genomes in the population. It is passed a CloneMethod variable, an enumerated type.
The CloneMethod parameter could be used to inform the “clone” method whether it
should copy the contents of the genome into the newly constructed genome, or if a only
a new empty genome is needed. It is not necessary to incorporate this functionality
in the implementation by always copying the genome contents, as is done in the
example. The code for the initializer, crossover, mutator, and objective functions
must be implemented as described in the previous examples. It is not necessary to
define the genetic operators and objective functions as members of the class, but it
is common practice to do so. A comparator may be implemented as well, but GAlib
does not require this. The “GADefineldentity” function (Figure 7, line 6) takes the
genome name and a number greater than 200. This is used to identify the genome in

€ITor 1messages.

Creating a Custom GA Class
It is also possible to create one’s own genetic algorithm class, although it is
not likely for this to be necessary with GAlib. MyGA in Figure 9 inherits from
GASteadyGA, but the functions in that class can be overridden to do whatever the

programmer desires.

Cellular Automaton Example
In Appendix A is an example of a complete program using GAlib. The GA is used
to evolve a one-dimensional cellular automaton (CA) that can determine if an initial
condition string is filled with 50% or more ones than zeros. A cellular automaton is

defined as a set of rules, which, when applied to a binary array, modify the current

22

/*1x/ class MyGA : public GASteadyStateGA
/¥2x/ {
/*3%/ public:
/*4x/ GADefineIdentity("MyGA", 280);
/*¥5x/ MyGA(const GAGenome& g) : GASteadyStateGA(g); {}
/*6%/ virtual "MyGA() {}
\\Override desired functions in GASteadyStateGA here.
/¥T*/ };

Figure 9: Example of a Custom GA Class

array into a new one. The CA can be applied to the array successively for a specified
number of steps, each time applying the rules over the entire array. The most common
CA is known as the game of life. That CA is applied to a two-dimensional array, but
in this case, the array is a one-dimensional binary string. Following the previous
work done by Mitchell, Crutchfield, Hraber, Das, and Hanson (see [14], [15], and [6])
this GA should find a cellular automaton which solves the majority problem. The
CA found by the genetic algorithm should be able to change a string to a complete
sequence of ones if the initial string contains more than half ones. It should also create
a complete string of zeros if there are less than half ones in the initial condition.

The rules in a CA are applied over windows in the binary string. From the
center of the window, the rule can examine all the bits less than or equal to a set
radius in each direction. In the case of the example, the CA can examine two bits in
each direction, for a total of five bits in a window. Depending on the state of these
five bits, the CA will replace the center bit of the window with a one or zero in the
new string. The CA applies the rules in windows at every position in the old string
simultaneously, generating a new string. At the ends of the string, the window wraps
to the other end, so that every window contains the same number of bits.

Because there are five bits, there are a total of 2° or 32 possible rules. There are
rules for the window containing bits 00000, 00001, 00010, up to 11111. Each of these

rules returns a 0 or a 1 to replace the current middle value of the window. These ones

23

and zeros are stored in the genome, which has a length of 32-one position for each
rule. The binary equivalent of the array position where a gene is located specifies
when the rule applies to a window. For example, if position 10 in the genome array is
zero, whenever a window contains the bits 00101, the new string will contain a zero
at the middle location.

The program generates a set of 100 random initial conditions to score the genome
with. To ensure that solutions are evolved which work on all initial cases, new initial
conditions are generated each generation and the whole population is re-evaluated.
The initial conditions are chosen at varying levels of difficulties; the easiest strings
contain almost all ones and zeros to more difficult strings, which contain nearly uni-
form ones and zeros. An interesting addition to this GA is that every generation
the initial conditions used to score the population slowly become more difficult at a
specified rate, with more initial conditions closer to uniform.

The program demonstrates how to use GAlib to implement and solve a problem.
The genetic algorithm object and the genome object are both defined in the main
function. The main function steps through the GA, outputting results and generat-
ing new sets of ICs each generation. Notice how the GAGenome member function
initialize and step are used. Before these two functions are called, however, the GA
parameters have been set.

The function “GetIC” was written to generate sets of ICs that increase in dif-
ficulty each generation. Within the set of ICs are strings that range in difficulty as
well. “RunlC” takes on CA rule set and on IC and applies the rules to the IC. If the
CA works correctly and solves the majority problem for that IC, the function returns
1. Otherwise, zero returns. The objective function, “Objective,” uses “RunlC” to
add up the number of times a CA works correctly for all the strings in the IC. These
three functions act together as the user-programmed part of GAlib. They determine

the objective score for the genomes in the population.

24

As seen from this example, GAlib does most of the dirty work in genetic algorithm
programming for the programmer. It is not necessary to worry about keeping track of
populations, statistics, and generation of new population members. In most cases, the
data type, crossover, and mutation are taken care of as well. GAlib saves tremendous
amounts of time in the programming of simple genetic algorithms, and for more
complicated GAs, it frees the programmer to concentrate on the more important

aspects of the GA.

