
CHAPTER �

THE USE OF GALIB

GAlib is a C�� library developed by MatthewWall �see �����at the Massachusetts

Institution of Technology designed to assist in the development of genetic algorithm

applications� The library contains numerous classes that o	er functionality and 
exi�

bility in the design of optimization applications with genetic algorithms� The library

includes default genetic algorithm models� genome types� and genetic operators for

the quick creation of simple applications� and the ability to customize GAlib for more

complicated optimizations� This library was programmed so that it may be used on

a variety of compilers on many platforms� The library has been used successfully on

DOSWindows� Windows NT��� MacOS� and UNIX systems� GAlib was designed

to work with Microsoft Visual C��� Borland C�� and GNU compilers� as well as

others� Our applications were written under the Microsoft Visual C�� environment

and all examples given in this paper were written in that environment�

GAlib supports several di	erent models of genetic algorithms� The simple GA

is the standard genetic algorithm� where after each generation� the population of

possible solutions is completely replaced by the mutation and crossover of the previous

generation� The incremental and steady state genetic algorithms both replace only

a portion of the population with each generation� The deme GA evolves multiple

population and migrates individuals from one population to another� With this GA

model� GAlib can run on parallel processors� evolving each population on a separate

processor� It is also possible to develop a custom GA to suit the purposes of an

application�
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Each of these GA types is simple to implement and gives a great deal of freedom

in their operation� A variety of algorithm termination methods� selection methods�

random number generators� and statistics are available to choose from� Most of

these features may be customized as well� Also� crossover and mutation probabilities�

population overlap� and population size are customizable quantities�

Any datatype in C�� may be used to create a genome type� GAlib includes

several of the most common genome types� These include one�dimensional� two�

dimensional and three�dimensional arrays of binary elements� and ��D arrays of real

or character valued elements� In addition to these� are lists� trees� ��D� ��D� and ��D

arrays� all of which are templates and allow the programmer to select any valid C��

data type� All the arrays may be set to any desired length� and the trees and lists

have dynamic sizes� Each of these genome types has built�in initialization� crossover�

mutation and comparison methods� which can be customized by the programmer�

The only routine that must be coded by the programmer is the objective function�

This is the function that evaluates an individual from the population and calculates

a �tness score�

The versatility and ease of GAlib makes it a useful tool for implementing genetic

algorithms� It is versatile enough to apply to complex optimization problems through

customization� yet still simpli�es the work� For simple genetic algorithm applications�

little programming is required� Also� because GAlib includes a large variety of genetic

algorithm and genome types and is written with a hierarchical structure� it is simple

to modify software already written with GAlib to perform new tasks�

General Overview

When programming using GAlib� one will work primarily with two classes	 a

genome class and a genetic algorithm class� A genome represents a single individual

in the population of solutions� The genetic algorithm de�nes how the solution will



�

be evolved� In addition to de�ning these two classes� an objective function is needed�

GAlib supplies the two classes� but the objective function must be programmed�

If the classes supplied by GAlib are inadequate to the task at hand� they may be

customized� or the programmer may develop his or her own implementations�

The three necessary steps to developing an application using GAlib are to�

� de�ne a representation

� de�ne the genetic operators

� de�ne the objective function

GAlib includes many examples� built�in operators� and genome representations

to aid in the �rst two steps� but the objective function must be implemented by the

programmer� Once these three steps have been completed� the genetic algorithm can

begin its search for a solution�

A single object is used to represent a possible solution to an optimization prob�

lem� The genetic algorithm will create a population of this structure that is supplied�

Then� the genetic algorithm will operate on the population in an attempt to evolve

the best solution� The data genome structure used by GAlib is called a GAGenome�

The GAlib library contains genomes represented as an array� a list� a tree� and a string

of binary bits� These genome types are derived from the class GAGenome and a data

structure class� For example� the class GATreeGenome class� which represents a tree

structure� inherits from the class GAGenome and the class GATree� The programmer

may choose from one of these built�in genomes or if none of GAlib�s available genome

types will work as a representation of a solution to the problem at hand� the pro�

grammer may develop his or her own GAGenome type� The programmer must write

the new type inherited from the class GAGenome and his or her own data structure

class� This programming style is the most cumbersome aspect of GAlib and described

in detail later�
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In addition to the genome types available� GAlib o�ers a selection of genetic

algorithm models to choose from� The basic types of genomes included are the simple�

steady�state� and incremental genetic algorithms� These GA types inherit from the

class GAGeneticAlgorithm� They di�er from each other in the methods that new

population members are created and replace the old population members�

A properly implemented genetic algorithm will be capable of performing local

searches as well as global searches for the best solution to an optimization problem� A

feature of GAlib is that it is simple to modify the parameters of the genetic algorithm

in order to �nd the best conditions for the search�

Overview of the Genetic Algorithm Object

The genetic algorithm object controls the process of evolution� It determines

which individuals to mate� which to replace� and which to survive� It also keeps track

of statistics and determines when to stop the evolution� The genetic algorithm follows

a series of steps� First� the population is initialized� Next� for every generation until

the termination requirements have been met� individuals are selected for mating�

the crossover is performed� the o�spring are mutated� and then inserted into the

population� The programmer selects the requirements for termination� He or she can

choose to terminate after a speci�ed number of generations� once a certain �tness

score has been achieved� or by a measurement of the population convergence� The

programmer may also write a customized termination function�

Overview of the Population Object

The population object contains all the genomes making up the population� The

population object keeps track of statistics about the population as well� It keeps

track of the best solution� the average �tness� the deviation and other metrics� The

population object also maintains the selection method used to select the individuals
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to mate�

Overview of The Genome Object

The genome object has three primary operators used in the evolution of solu�

tions� The initialization operator inserts genetic material into the genome to initialize

the evolution� The mutation operator changes a portion of the genetic material to

generate a new solution� The crossover operator takes two genomes and combines

them to form a new genome� GAlib has defaults for each of these operators� but the

programmer can customize them to apply to the problem at hand�

The initialization operator is called at the beginning of the genetic algorithm�

It initializes the genome with new genetic material� Instead of creating new genome

objects� it inserts the genetic material into the genome data structure� From this

genetic material� the GA will evolve the solutions of the optimization problem� The

genome initialization function is called by the initialization operator in the population

object� By default� this calls the initialization operator of each genome� but this can

be customized�

The mutation operator de�nes how a genome is mutated to produce a new so�

lution� The operator should be able to mutate to obtain new genomes local to the

current solution as well as those which are distant from the original� It should be

able to introduce new genetic material into the genome and modify existing material�

Mutation operators act on di�erent data types di�erently� For example� mutating an

array structure should change a speci�ed value in the array� Mutating a tree should

change the structure of the tree as well as the data stored in the tree� It may be

necessary to de�ne several di�erent forms of mutation for a single application�

The crossover operator takes two parent genomes and combines them to form a

child genome� The crossover� like the mutation operator� should be speci�c to the data

type in the genome� The crossover may also be dependent on the speci�c problem as



�

well� For example� the traveling salesman problem requires that the genome maintain

a permutation of all cities in the genome� The crossover used in the genetic algorithm

must sustain this property in the new children generated�

In addition to these three operators� the programmer must create the objective

function� which is called to calculate a �tness score for each member of the population�

This function is the only portion of the genetic algorithm that must be programmed�

A comparator may also be included� This is used to measure the di�erence between

two members of the population and is used for some statistical measures kept by

GAlib� The comparator is not a required function�

For most applications� the supplied genome types are more than adequate� but

it is a simple process to write one�s own genome type� In general� it is not necessary

for GAlib to know the meaning of the contents of the genome� GAlib is written with

tremendous generality� so any genome type� custom or otherwise� can be used with

any genetic algorithm type�

The genetic algorithm takes care of when to clone the population� perform

crossovers� mutations� initializations� etc� All of these operations are performed via

the genome member functions�

Implementation

Figure � shows an example of a program written with GAlib� To implement a

GA using GAlib� �rst a genome must be declared� This is done on line �� Notice that

the objective function is passed as a parameter to the constructor� The objective

function is passed to the genome so that it can be called from the genome when

it needs to be evaluated� Once a genome has been created� declare an instance of a

genetic algorithm object� passing the genome to its constructor� The genome declared

here is not used in the genetic algorithm itself� but instead a population of genomes

is cloned from it� The GA function 	evolve
� line �� can then be called to initiate and
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����� void main��

����� �

��Declare a single genome object� which will be duplicated by the GA	

��
�� GA�DBinaryStringGenome genome�length� Objective��

��This one is a simple GA with a population of ��D binary

��strings	

���� GASimpleGA ga�genome�� ��Declare the genetic algorithm	

��Evolve a solution by calling the evolve member function	

����� ga	evolve���

��Print the results after evolution has completed by calling

��the statistics function	

����� cout �� ga	statistics�� �� endl�

����� �

����� float Objective�GAGenome ��

����� �

��Write the code for the appropriate objective function here	

�������

Figure �� Structure of a Simple Program Using GAlib

run the GA�

In this example� the genome selected is a one�dimensional string of binary values�

The length of the string is determined by the value of the variable length� The

genetic algorithm object used in this application is a GASimpleGA� This is a GA that

completely replaces the population each generation with a new population created by

the crossover and mutation operators� One may also wish to set various parameters

that change the operation of the GA� as in Figure �� These member functions of

GA types set the size of the population� the number of generations to evolve and

the probabilities for mutation and crossover respectively� The �minimize	 member

function switches the optimization from the default maximization to a minimization�

Writing the Objective Function

The objective function is the only place where the programmer codes in the
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ga�populationSize�popsize��

ga�nGenerations�ngen��

ga�pMutation�pmut��

ga�pCrossover�pcross��

Figure �� Setting parameters for a GA

����� float Objective�GAGenome � g�

��	�� 


��Type�casting the GAGenome to a GA�DBinaryStringGenome�

����� GA�DBinaryStringGenome � genome  �GA�DBinaryStringGenome �� g�

����� float score  ����

��This for�loop sums all the ones in the genome in score

����� for�int i �� i�genome�length��� i����

����� score � genome�gene�i�� ��The member function gene returns the

��value in the string at location i�

��Return the sum of ones as the final objective score�

����� return score�

����� �

Figure �� Example of an Objective Function

meaning of data stored in the genome� The objective function returns a �oating�

point value� which is the objective score for the genome� The function is passed the

genome to be evaluated as an instance of the generic class GAGenome� GAlib requires

this so that the function header matches with the library� All genomes must inherit

from the class GAGenome and the genome must inherit from a data type class as well

in order to implement the data type as a GAlib genome� This is true for all genome

types included with GAlib� Because the genome passed to the objective function is

of the generic GAGenome class� it must 	rst be type cast into the previously de	ned

genome class before the objective score can be calculated� Figure � is an example

of a simple objective function� The function gives higher objective scores to those

genomes with more ones�
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The type cast shown in Figure � �line �� creates a new variable genome of type

GA�DBinaryStringGenome� which now contains the correct type for the genome

to be evaluated� After this type casting� the data and speci�c member functions

of the genome can be accessed to calculate its score� The gene function of the

GA�DBinaryStringGenome called on line 	 returns the value at the given location in

the string� The length function returns the length of the string�

The objective function can be de�ned as a static member of a custom genome

class� as described in detail later� or it can be written independently of the genome

and passed to the genome constructor� which is the most common and easiest method�

It can also be set with the evaluator member function of the genome class� if it should

change during the evolution�

Genetic Algorithm Objects

GAlib is packaged with a selection of genetic algorithm types� The available GA

types are the GASimpleGA� the GASteadyStateGA� the GAIncrementalGA� and the

GADemeGA� Each of these GA types and any customized GA inherit from the class

GAGeneticAlgorthm�

The GAGeneticAlgorithm class is an abstract class and can therefore have no

instantiations� This class keeps track of GA statistics �number of crossovers and mu


tations� best� mean� and worst in each generation� etc��� It also de�nes the terminator

function� which stops the evolution and parameters such as crossover and mutation

probabilities�

The functions �pCrossover� and �pMutation� can be called to set and get the

probabilities for crossover and mutation� The function �population� is called to set

and get the population and the function �nGenerations� can be called to set and get

the number of generations to evolve before completing the evolution� The �done�

function returns true if termination requirements for the GA have been met and false
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if they have not been met� the function generation returns the current generation the

GA is evolving�

To control the evolution of the GA� the programmer can invoke the functions

�evolve�� �initialize�� and �step�� �evolve� �rst initializes the GA� then evolves the

population generation by generation until the termination requirements have been

met� �initialize� resets the evolution and initializes each member of the population�

�step� completes a single generation of the evolution�

The GASimpleGA is the simple GA as described by Goldberg �see 	
��� Every

generation the current population is completely replaced by the children generated

by the crossover and mutation operators� The elitism ag can be set for this GA type

with the �elitist� function� This ag causes the GA to always keep the single best

individual in the population and inserts it into the next generation�

GASteadyStateGA uses an overlapping population model� The GA creates a

population of individuals with the crossover and mutation operators� It then merges

this new population with the previous population and removes the worst individuals

to return to the original population size� By setting the �pReplacement� parameter�

the percentage of the population to be replaced each generation is set� The �nRe�

placement� parameter speci�es the exact number of individuals to be replaced� Only

one of these parameters can be set at one time� Setting one overrides the other�

The GAIncrementalGA also uses an overlapping population model� but the over�

lap is very small� one or two new individuals are added to the old population each

generation� These new members replace the individuals with the worst score by de�

fault� but they can be set to replace individuals based on custom requirements� The

number of children generated each generation can be set by the �nO�spring� function

to one or two� The default is two�

GADemeGA evolves populations in parallel and migrates individuals between

them� Each of the separate populations evolves with a steady�state GA as described
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above� but each generation� some individuals migrate between populations� The

function �nMigration� determines the number of the best population members of

each population to migrate� The �nReplacement� or �pReplacement� functions are

used to specify the population to be replaced in each generation of the steady�state

genetic algorithms as described above�

Genome Objects

Most problems to be optimized by a genetic algorithm can be contained in the

genome types included with GAlib� These include one� two and three�dimensional

binary strings and template arrays� a template list� a template tree� a character array�

and a real array� Each of these genomes is implemented as a class within GAlib�

inheriting from the abstract class GAGenome�

The genetic operators for mutation� crossover� initialization� comparison� and

scoring are all passed one or more objects of type GAGenome� These GAGenomes

must then be type cast into the correct speci�c genome class so that the data stored

in the genome can be accessed� The genomes are passed as the general GAGenome

because it facilitates the customization of GAlib�

The functions �mutator�� �crossover�� �initializer�� �comparator�� and �eval�

uator� all specify the function used to perform their named operations during the

genetic evolution� The functions �mutate�� �initialize�� �compare�� and �evaluate�

call the functions set by the above� The function �sexual� returns a pointer to the

crossover function� but only the genetic algorithm object is responsible for calling

the crossover function� The �clone� function allocates memory for a new instance of

the genome and the �copy� function replicates the contents of a genome into another

genome� Because the genetic algorithm object performs the genetic operations and

creates the population� it is usually unnecessary to call these functions directly� They

are� however� useful while testing the implementation of newly designed operators
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and genomes�

The function �score� returns the �tness score of a genome� and the insertion

operator ���	 is de�ned to output the contents of the genome� With these two class

members� the �nal result of an evolution can be output by displaying the best genome

score and contents�

The classes �DBinaryStringGenome� �DBinaryStringGenome� and 
DBinaryS�

tringGenome contain arrays of binary elements� A single element can be read or

modi�ed with the �gene� function� The �set� and �unset� members are used to

modify a range of elements in an array�

GA�DArrayGenome�T�� GA�DArrayGenome�T�� and GA
DArrayGenome�T�

are all arrays of the supplied template type� Any class or type may be used as the

template class as long as the comparison operators �� and � are de�ned� as well

as the assignment operator � and a copy constructor� This makes these array types

very versatile� Many common optimization problems can make use of these genome

types� The �gene� function allows access to the elements of the genome� as it does

for the binary genomes� and the �swap� function is also de�ned for exchanging two

elements in the array�

The array and binary string classes all have user de�ned dynamic lengths� The

functions �length�� �depth�� and �width� set the size of the array in the �rst� second�

and third dimensions respectively�

Also included with GAlib is the GAListGenome�T�� This genome type incor�

porates the �exibility of the template as well� The list is circular and doubly linked�

The list can be traversed and modi�ed using the �current�� �head�� �next�� �prev��

and �tail� functions� The �warp� function allows access to a speci�ed location in the

list� �destroy� and �remove� both remove nodes from the list� However� �remove� re�

turns a pointer to the item and does not free the memory used by the item� �destroy�

completely removes the item from memory� The �insert� function can be called to
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insert an item into the list and the �swap� function exchanges two items in the list�

The GATreeGenome�T� can represent and manipulate a tree with nodes of any

valid type or class� The children of a single node are kept as a circular linked list with

the eldest child at the head of the list� All children have a pointer to the parent and

the parent node has a pointer to the eldest child� A tree has only one root� A variety

of operators have been supplied for traversal of the tree and insertion and deletion of

nodes�

All of the above classes are packaged with default crossovers and mutators� Some

also have default initializers and comparators� For one�dimensional arrays� the pro�

grammer can choose from one�point and two�point crossovers� The one point crossover

is also available to the list genome� In multidimensional arrays� the genome matrix

is divided into quadrants� These quadrants are merged with quadrants from another

parent to create a new child� The tree genome crossover swaps a subtree between two

parents�

Mutators for the arrays and list swap two random elements� The tree genome

swaps two subtrees within one genome to form a new genome� The initializer is

de�ned for the binary strings� The initializer uniformly selects ones and zeros for

each element� A comparator is also de�ned� and this counts the number of items that

di	er between the two genomes being compared�

Of course� if any of these genomes or operators do not �t the problem at hand� it

is possible to establish operators and genomes of one
s own design� For most problems�

however� the supplied genomes are adequate� In many cases� though� it is desirable

to write one
s own genetic operators�

Additional Objects

Along with genetic algorithm classes and genome classes� GAlib includes other

classes used in the optimization process� A GAStatistics object keeps track of various



��

statistics throughout evolution� the GAPopulation object contains the populations

evolved and the GAScalingScheme and GASelectionScheme control how the GA scores

are scaled and how genomes are selected to mate respectively� There is also a set of

random number generators included with GAlib�

Customizations to GAlib

To use GAlib to its greatest capacity� it is necessary to understand how GAlib

can be customized� Each of the genetic operators and the genome itself can be made

to order� Even a genetic algorithm object can be customized� The following section

explains further how the customization process works with GAlib�

Customizing the Initialization Method

For most of the genome types� and always when a new genome is created� the

programmer must supply a custom initialization function� An initializer function is

passed an object of GAGenome class� which must be type cast into the appropriate

genome type� The function must be void and therefore returns nothing� Initializers

are associated with a genome by using the initializer member function of the genome

object� Figure � is an initializer function that assigns random �oating�point val�

ues between �min weight	 and �max weight	 to each member of the genome� The

genome inherits from class CArray� a dynamic array class packaged with the Microsoft

Foundation Class Library under Microsoft Visual C

�

The initializer was used to assign random weights to a neural network in the

Brain Evolver program� The initialization function should only assign values to the

genome� The genetic algorithm object has already allocated the memory for the

genome before the initializer is called�
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����� void CArrayGenome��Init�GAGenome � g�

����� 	

��Type
casting the GAGenome to a CArrayGenome�

����� CArrayGenome � genome  �CArrayGenome�� g�

����� int i�

����� genome�SetSize�struct�size�� ��Sets the dynamic CArray�s size�

��Initialize each element of the array to a random value�

����� for�i�� i�struct�size� i���

����� genome�i�  GARandomFloat�min�weight� max�weight��

����� �

Figure �� Example of an Initializer Function

Customizing the Mutation Method

Often times� one will desire to implement a custom mutator� Mutations may

be dependent on the problem� and it may be desirable to have more than one type

of mutation occurring during the evolution� The mutator function is passed two

parameters� the genome as a GAGenome� which again� must be type cast� and the

mutation probability as a �oating point� It is up to the mutator how this probability

is interpreted� The mutator should return an integer value as the count of the number

of mutations that have occurred� Use the genome member function mutator to assign

the custom mutator for use in the optimization�

The mutator in Figure � was also used in the program Brain Evolver� It mutates

the weights of the incoming edges connected to a random node in the network by

adding a random �oat between the �min weight	 and �max weight	 values 
lines

����� The genome� as before� inherits from the CArray class�

Customizing the Crossover Method

As with the mutator� occasionally a programmer will want to de�ne his or her
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����� int CArrayGenome��Mutate�GAGenome� g� float pmut�

��	�� 


��Type�cast GAGenome into CArrayGenome�

���� CArrayGenome � genome � �CArrayGenome � � g�

��Use a random number to test if the genome should be mutated�

��Mutation should only occur with probability pmut�

����� if�pmut��� �� GARandomFloat�� �� pmut�

����� 


����� return ��

����� �

����� int node� i�

��Pick a random node from the neural network to mutate

����� node � GARandomInt��� max�nodes � ���

��Mutate all the incoming connections to the random node

��by adding a random number to their weights�

������ for�i�connection�start�node�� i��connection�finish�node�� i���

������ genome�i� � genome�i� � GARandomFloat�min�weight� max�weight��

���	�� return ��

������

Figure �� Example of a Mutator Function
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own crossover method� The crossover function receives four parameters� the two

parents and the two children� The parents are passed as GAGenome objects� and the

children as GAGenome pointers� All of these must by type�cast� The crossover should

be de�ned so that either one or two children can be generated� The function should

return an integer� the number of children created� which is always one or two� If one

of the GAGenome pointers is nil� the crossover should not try to generate a child

at that pointer� The children have already been allocated� so the crossover function

does not need to create memory for the new children�

The crossover in Figure � takes genetic material from one parent and inserts it

into the other to create a new child� This is a one�point crossover� where a single

location in the parent strings is selected at random� Genetic material from parent

one 	mom
 and parent two 	dad
 are inserted into the two children� Child one 	bro


gets the material in mom to the left of the crossover location and the material in dad

to the right of that location� Likewise� child two 	sis
 gets material to the left of the

crossover point in dad and to the right of the location in mom�

Notice that the function tests to see if the variables �c�� and �c� is nil before

attempting to crossover and create a new child 	lines �� and �
� Also notice that the

variable �nc� keeps track of how many children are created and its value is returned

	lines �� ���  and �
�

Creating a Custom Genome Class

A programmer may derive his or her own genome class from a pre�de�ned data

object� In Figure � and Figure �� an example showing the de�nition of the CAr�

rayGenome class� the class inherits from CArray� the data object� and GAGenome�

All custom genomes must inherit from GAGenome�

The constructors and �copy� function should be written as in Figure � and

Figure �� The programmer must insert the correct name of the custom genome and
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����� int CArrayGenome��Cross�const GAGenome � p�� const GAGenome � p��

����� GAGenome � c�� GAGenome � c�	

��
�� �

����� int nc  �� ��Number of new children counter�

����� int i� j� cross�

��Type�casting GAGenomes into GA�DArrayGenomes for the parents�

����� CArrayGenome � mom  �CArrayGenome �	 p��

����� CArrayGenome � dad  �CArrayGenome �	 p��

��Type�casting GAGenome � into GA�DArrayGenome � for children�

����� CArrayGenome � bro  �CArrayGenome �	 c��

����� CArrayGenome � sis  �CArrayGenome �	 c��

��Select the location to crossover with the two parents�

������ cross  GARandomInt���mom�GetSize�	��	�

��Check if bro is nil before he gets the genetic material�

������ if�c�	

������ �

���
�� nc��� ��Increment number of new children�

������ bro��copy�mom	� ��Copy mom�s genetic material into bro�

��Insert the selected genetic material from dad into bro�

������ for�icross�i�mom�GetSize�	�i��	

������ �

������ ��bro	�i�  dad�i��

������ �

������ �

��Check if sis is nil before she gets the genetic material�

������ if�c�	

������ �

������ nc��� ��Increment number of new children�

���
�� sis��copy�dad	� ��Copy dad�s genetic material into sis�

��Insert the selected genetic material from mom into sis�

������ for�icross�i�mom�GetSize�	�i��	

������ �

������ ��sis	�i�  mom�i��

������ �

������ �

��Return the number of children generated�

������ return nc�

��
����

Figure �� Example of a Crossover Function



��

����� class CArrayGenome �

����� public CArray�int� int��

��	�� public GAGenome

��
�� �

����� public�

���� GADefineIdentity��CArrayGenome�� �����

��Declaration of genome operators and evaluator

����� static void Init�GAGenome���

����� static int Mutate�GAGenome�� float��

����� static float Compare�const GAGenome�� const GAGenome���

������ static float Objective�GAGenome���

������ static int Cross�const GAGenome�� const GAGenome��

������ GAGenome�� GAGenome���

��Constructor that assigns the initializer� mutator�

��crossover� comparator� and objective functions�

���	�� CArrayGenome���

��The copy constructor�

���
�� CArrayGenome�const CArrayGenome� orig� � copy�orig�� �

��The destructor member function�

������ virtual �CArrayGenome�� ��

��Definition of assignment operator ��

����� CArrayGenome� operator��const GAGenome� orig��

��The clone function which allocates memory for a new genome

������ virtual GAGenome� clone�CloneMethod� const�

��The copy function duplicates the contents of a genome�

������ virtual void copy�const GAGenome� orig��

��Declare any other member functions and variables here�

��������

Figure �� Example of a Custom Genome Class Header



��

����� CArrayGenome��CArrayGenome�� � GAGenome�Init� Mutate� Compare�

����� 	

��
�� crossover�Cross��

����� evaluator�Objective��

���� �

����� CArrayGenome� CArrayGenome��operator��const GAGenome� orig�

����� 	

����� if��orig �� this� copy�orig��

����� return �this�

�������

������GAGenome� CArrayGenome��clone�CloneMethod� const

������	

���
�� return new CArrayGenome��this��

�������

�����void CArrayGenome��copy�const GAGenome� orig�

������	

������ GAGenome��copy�orig��

������ CArrayGenome� new�genome � �CArrayGenome�� orig�

������ SetSize�new�genome�GetSize����

��The Copy member of CArray copies the contents of the array�

������ Copy�new�genome��

�������

��Code genome operators� objective function� etc�

Figure �� Example of a Custom Genome Class Implementation
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copy the data by the appropriate method for the genome�s datatype in the copy

function� The �clone� function and assignment operator ��	 also must be de
ned�

The genetic algorithm object uses the �clone� function to allocate memory for new

genomes in the population� It is passed a CloneMethod variable� an enumerated type�

The CloneMethod parameter could be used to inform the �clone� method whether it

should copy the contents of the genome into the newly constructed genome� or if a only

a new empty genome is needed� It is not necessary to incorporate this functionality

in the implementation by always copying the genome contents� as is done in the

example� The code for the initializer� crossover� mutator� and objective functions

must be implemented as described in the previous examples� It is not necessary to

de
ne the genetic operators and objective functions as members of the class� but it

is common practice to do so� A comparator may be implemented as well� but GAlib

does not require this� The �GADe
neIdentity� function �Figure �� line 	 takes the

genome name and a number greater than ���� This is used to identify the genome in

error messages�

Creating a Custom GA Class

It is also possible to create one�s own genetic algorithm class� although it is

not likely for this to be necessary with GAlib� MyGA in Figure � inherits from

GASteadyGA� but the functions in that class can be overridden to do whatever the

programmer desires�

Cellular Automaton Example

In Appendix A is an example of a complete program using GAlib� The GA is used

to evolve a one�dimensional cellular automaton �CA	 that can determine if an initial

condition string is 
lled with ��� or more ones than zeros� A cellular automaton is

de
ned as a set of rules� which� when applied to a binary array� modify the current



��

����� class MyGA � public GASteadyStateGA

����� �

����� public�

����� GADefineIdentity	
MyGA
� ����

����� MyGA	const GAGenome� g� � GASteadyStateGA	g�� ��

����� virtual �MyGA	� ��

��Override desired functions in GASteadyStateGA here�

����� ��

Figure �� Example of a Custom GA Class

array into a new one� The CA can be applied to the array successively for a speci�ed

number of steps� each time applying the rules over the entire array� The most common

CA is known as the game of life� That CA is applied to a two�dimensional array� but

in this case� the array is a one�dimensional binary string� Following the previous

work done by Mitchell� Crutch�eld� Hraber� Das� and Hanson �see 	
��� 	
�� and 	���

this GA should �nd a cellular automaton which solves the majority problem� The

CA found by the genetic algorithm should be able to change a string to a complete

sequence of ones if the initial string contains more than half ones� It should also create

a complete string of zeros if there are less than half ones in the initial condition�

The rules in a CA are applied over windows in the binary string� From the

center of the window� the rule can examine all the bits less than or equal to a set

radius in each direction� In the case of the example� the CA can examine two bits in

each direction� for a total of �ve bits in a window� Depending on the state of these

�ve bits� the CA will replace the center bit of the window with a one or zero in the

new string� The CA applies the rules in windows at every position in the old string

simultaneously� generating a new string� At the ends of the string� the window wraps

to the other end� so that every window contains the same number of bits�

Because there are �ve bits� there are a total of �� or �� possible rules� There are

rules for the window containing bits ������ ����
� ���
�� up to 




� Each of these

rules returns a � or a 
 to replace the current middle value of the window� These ones



��

and zeros are stored in the genome� which has a length of ���one position for each

rule� The binary equivalent of the array position where a gene is located speci�es

when the rule applies to a window� For example� if position �� in the genome array is

zero� whenever a window contains the bits ������ the new string will contain a zero

at the middle location�

The program generates a set of ��� random initial conditions to score the genome

with� To ensure that solutions are evolved which work on all initial cases� new initial

conditions are generated each generation and the whole population is re	evaluated�

The initial conditions are chosen at varying levels of di
culties� the easiest strings

contain almost all ones and zeros to more di
cult strings� which contain nearly uni	

form ones and zeros� An interesting addition to this GA is that every generation

the initial conditions used to score the population slowly become more di
cult at a

speci�ed rate� with more initial conditions closer to uniform�

The program demonstrates how to use GAlib to implement and solve a problem�

The genetic algorithm object and the genome object are both de�ned in the main

function� The main function steps through the GA� outputting results and generat	

ing new sets of ICs each generation� Notice how the GAGenome member function

initialize and step are used� Before these two functions are called� however� the GA

parameters have been set�

The function �GetIC was written to generate sets of ICs that increase in dif	

�culty each generation� Within the set of ICs are strings that range in di
culty as

well� �RunIC takes on CA rule set and on IC and applies the rules to the IC� If the

CA works correctly and solves the majority problem for that IC� the function returns

�� Otherwise� zero returns� The objective function� �Objective� uses �RunIC to

add up the number of times a CA works correctly for all the strings in the IC� These

three functions act together as the user	programmed part of GAlib� They determine

the objective score for the genomes in the population�



��

As seen from this example� GAlib does most of the dirty work in genetic algorithm

programming for the programmer� It is not necessary to worry about keeping track of

populations� statistics� and generation of new population members� In most cases� the

data type� crossover� and mutation are taken care of as well� GAlib saves tremendous

amounts of time in the programming of simple genetic algorithms� and for more

complicated GAs� it frees the programmer to concentrate on the more important

aspects of the GA�


