DFS:

procedure previsit (v):
 pre (v) = counter; counter ++

procedure postvisit (v):
 post (v) = counter; counter ++

explore (v)

visited (v) = true (pre)

for each edge (v, u) ∈ E

 if (not visited (u)) explore (v) (post)
DFS visits the entire graph:

for all $v \in V$: visited(v) = false

for all $v \in V$:

if (not visited (v) : explore (v))

“connected components of a graph” “forest”

Previsit and Postvisit Orderings

previsit : moment of first discovery of a node

postvisit : moment of final departure
DFS in a directed graph
Different kinds of edges

Tree edges part of DFS forest
Forward edges lead to a descendant
Back edges lead to an ancestor
Cross edges lead neither to an ancestor nor a descendant (they lead to a node that has been post-visited)

• u is an ancestor of v

\[\text{pre}(u) < \text{pre}(v) < \text{post}(v) < \text{post}(u) \]

```
[   [    ]       ]
u v v u
1 3 4 6
```

“means” “forward or tree” edge

• u is a descendant of v

\[\text{pre}(v) < \text{pre}(u) < \text{post}(u) < \text{post}(v) \]

```
[   [    ]       ]
v u u v
```

• u is a cross edge

```
[   ]   [   ]
v v u u
```

```
8, 9 13, 14
```
Strongly Connected Components
Breadth first search

procedure bfs(G, s)
Input: Graph G = (V, E), directed or undirected; vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set to the distance from s to u.

for all u ∈ V:
 dist(u) = ∞

dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
 u = eject(Q)
 for all edges (u, v) ∈ E:
 if dist(v) = ∞:
 inject(Q, v)
 dist(v) = dist(u) + 1
Shortest Paths
procedure dijkstra(G, s)
Input: Graph G = (V, E), directed or undirected;
positive edge lengths (u, v) ∈ E: vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all u ∈ V:
 dist(u) = ∞
 prev(u) = nil
 dist(s) = 0

H = makequeue(V) (using dist-values as keys)
while H is not empty:
 u = deletemin(H)
 for all edges (u, v) ∈ E:
 if dist(v) > dist(u) + d(u, v):
 dist(v) = dist(u) + d(u, v)
 prev(v) = u
 decreasekey(H, v)