

Chapter 9

Internet Control Message Protocol (ICMP)

ICMP

- IP unreliable, connectionless datagram delivery
 - Efficient use of network resources
 - Best effort service to send from source to destination
- No error control
 - What if router must discard datagram because it cannot find route to final destination?
 - What if final destination must discard all fragments because some don't arrive within time limit?
 - Error has occurred and IP Protocol has no built-in mechanism to notify the original host
- No method to obtain node information
 - Is router or host alive?

Value of protocol field in IP datagram is 1 to indicate data is ICMP

ICMP

- ICMP reports errors
- Higher protocols must correct them
- ICMP always reports error messages to the original source
- · Source address within IP datagram

Destination-unreachable format

When a **router cannot route a datagram** the datagram is discarded and the router sends a "destination unreachable" message back to source host.

When a **host cannot deliver a datagram**, the datagram is discarded and the destination host sends a "destination unreachable" message back to source host.

• 0: Net Unreachable	1: Host Unreachable			
• 2: Protocol Unreachable 3: Port Unreachable				
 4: Frag Needed but "Don't Frag" was Set 				
• 5: Source Route Failed	6: Dest. Net Unknown			
• <u>7: Dest. Host Unknown</u>	8: Source Host Isolated			
• 9: Communication with Dest Net is Admin Prohibited				
• 10: Communication with Dest Host is Admin Prohibited				
• 11: Dest Net Unreachable for Type of Service				
• 12: Dest Host Unreachable for Type of Service				
13: Communication Administratively Prohibited				
• 14: Host Precedence Violat	ion			
15 [.] Precedence cutoff in effect				

Source Quench

- IP offers no inherent support to guide flow control
- The source host does not know if the routers or dest host have been overwhelmed with datagrams
- Lack of flow control can create congestion in routers or destination host
 - Router forwarding buffers may overflow
 - Host processing buffers may overflow
- Source Quench messages in ICMP
- Routers or hosts that discard packets sends SQ

 Informs source of discarding; warns source of speed

pe: 4	Code: 0	Checksum
	Unused (All)	0s)
l	Part of the received IP datagran	1 including IP header
	plus the first 8 bytes of c	latagram data

Note

A source-quench message informs the source that a datagram has been discarded due to congestion in a router or the destination host.

The source must slow down the sending of datagrams until the congestion is relieved. One source-quench message should be sent, from router or destination host for each datagram that is discarded due to congestion.

• There is no mechanism for telling source that congestion is relieved and transmission can resume at previous rate.

• Source continues to send at reduced rate.

• If transmission is many-to-one, the destination may drop packets from slower sending host but not those from faster (congestion causing) senders.

Time Exceeded Message

Sent in two cases:

Case 1:

Whenever a router receives a datagram with a time-to-live value of zero, it discards the datagram and sends a time-exceeded message to the original source.

Time Exceeded Message

Sent in two cases:

Case 2:

When the final destination does not receive all of the fragments in a set time, it discards the received fragments and sends a time-exceeded message to the original source.

Time Exceeded Message

In a time-exceeded message, code 0 is used only by routers to show that the value of the time-to-live field is zero. Code 1 is used only by the destination host to show that not all of the fragments have arrived within a set time.

Parameter-problem message format

Error or ambiguity in one of the header fields (Code 0)

Required part of an IP option is missing

(Code 1)

A parameter-problem message can be created by a router or the destination host.

Parameter-problem message format

 Type: 12
 Code: 0 or 1
 Checksum

 Pointer
 Unused (All 0s)
 Unused (All 0s)

 Part of the received IP datagram including IP header plus the first 8 bytes of datagram data
 Unused (All 0s)

Code 0: Ptr field points to problem byte Code 1: Ptr field unused

ICMP Redirection

- Router's routing tables updated dynamically using routing protocols
 - Hosts don't participate (for efficiency) since many more hosts than routers
- Hosts usually use static routing
 - Can result in misrouted datagram
 - In this case the recipient router forwards datagram to correct router
 - Sends ICMP "redirection" message to sending host to update its routing table

Note

A host usually starts with a small routing table that is gradually augmented and updated. One of the tools to accomplish this is the redirection message.

Echo Request / Reply

- Used by network managers and users for diagnosing network problems
- Tests if IP stack functioning on destination and routers in between
- Tests for the "reachability" of a host
- Used to implement the PING command
 - Packet INternet Groper

- An echo-request message can be sent by a host or router.
- An echo-reply message is sent by the host or router which receives an echo-request message
- Echo-request and echo-reply messages can be used by network managers to check the operation of the IP protocol.

- Optional Data must be returned exactly as sent
- Identifier and Sequence # not formally defined
- Identifier often Process ID of sender
- Sequence # keeps track of particular request/reply

Timestamp Request/Reply

- Used by two machines to determine the roundtrip time for an IP datagram to travel between them
- Also used to synchronize the clocks in two machines
- Format contains three timestamps, each 32-bits
- Represents time (in milliseconds) from midnight in Universal Time (formerly GMT)

Ti	mestamp-requ	est format
 Original Tir clock at 	nestamp receives departure time	Univeral Time shown by
Receive/Tra	nsmit timestamps	s initialized to 0s
Type: 13 or 14	Code: 0	Checksum
Identi	fier	Sequence number
	Original time	estamp
	Receive time	stamp
	Transmit time	estamp

Timestamp-reply format

- · Original Timestamp receives value copied from request
- Receive timestamp contains UT time dest received packet
- Transmit timestamps contains UT time packet sent
 I3: request
 I4: reply

Type: 13 or 14	Code: 0	Checksum
Identi	fier	Sequence number
	Original time	stamp
	Receive time	stamp
	Transmit time	stamp

Sending time = value of receive timestamp –
value of original timestamp
Receiving time = time the packet returned –
value of transmit timestamp
Round-Trip Time = Sending time + Receiving time
The Round-Trip Time computation correct
even if their clocks are not synchronized.

Mask-request and mask-reply message format

- Used by Host to obtain its IP address mask
- · Host sends request to router if it knows IP of router
- If not, host broadcasts request and then router replies
- · Diskless workstations use RARP to first get IP
- Then use ICMP Mask-request to get address mask

: Reply		
Type: 17 or 18	Code: 0	Checksum
Identi	fier	Sequence number

Router	solicitation m	essage format
Hosts need to	know addresses	of routers
Request broad routers	dcast by host to o	btain the operating
Routers reply including the request)	with all routers t mselves (Sometin	hey are aware of mes reply without
Туре: 10	Code: 0	Checksum
Iden	tifier	Sequence number

Router advertisement message format

Preference level is used to select default router

If pref level is 0 then it is default. If level is 0x80000000 never selected as default

Type: 9	Code: 0	Checksum
Number of addresses	Address entry size	Lifetime
	Router address	s 1
	Address preferen	ace 1
	Router address	s 2
	Address preferen	ace 2
	•	
	•	
	•	

Example of checksum calculation			
8	0	0	
	1 9		
	TEST		
8 and T ؤ S ؤ Checks	$\begin{array}{c} d \ 0 \longrightarrow 0 \\ 0 \longrightarrow 0 \\ 1 \longrightarrow 0 \\ 9 \longrightarrow 0 \\ 9 \longrightarrow 0 \\ k \\ E \longrightarrow 0 \\ k \\ T \longrightarrow 0 \\ 1 \\ um \longrightarrow 1 \\ 0 \end{array}$	0001000 0000000 0000000 0000000 0000000 00000001 0000000 00001001 1010100 01000101 1010011 01010100 0101111 10100011 1010000 01011100	

