CSC465 — Computer Networks

These slides were produced almost entirely from material by Behrouz
Forouzan for the text “TCP/IP Protocol Suite (2" Edition)”, McGraw

Dr. J. Harrison

Hill Publisher

CONTENTS

Chapter 12

Transmission
Control Protocol
(TCP)

CON T EN T S (continued)

Position of TCP in TCP/IP protocol suite

hp[:l;‘:im SMTP TP TFTP DNS M “an HOOTP
Transpon

lage TCP uDP
Network [P

Inyer

technology

Dt limk I
aver
= Underlying LAN or WAN

TCP versus IP

Application program

Application program
(Process) Prperis)

Domain of 1P protocol

Domain of TCP protocol

Port numbers

TELNET TELNET
(Client) (Server)

=8

o H f}_‘ b
TCcp TCP

Stream delivery

Sending Receiving
Process Process

Stream of Bytes

e = [el

TCP is a byte stream oriented protocol

TCP unlike UDP, which sends decoupled, apparently
unrelated datagrams

Sending and receiving buffers

Sending Receiving
Process Process

Next byte Next byte
? 1o be sem 1o be received

Mext byte
Next byte 1o deliver

1o atcepl

Sending TCP Receiving TCP

Handles disparity between speed of the producing and consuming
processes

TCP Segments

 The IP layer, as a service provider for TCP,
needs to send data in packets, not as stream of
bytes

* TCP groups a number of bytes together into a
packet called a segment

» Segment encapsulated into an IP datagram
» Each segment can be a different size

* Process transparent to sending/receiving
processes

TCP segments

Sending Receiving
Process Process

P Segment N Segment 1 ?

Sending TCP Receiving TCP

Other TCP Properties
* Full-Duplex Service
— Segments can flow in both directions
— Each TCP has sending & receiving buffers
* Connection-Oriented Service
1. A’s TCP informs B’s TCP & gets approval from B
2. A & B’s TCP exchange data in both directions
3. When both complete A & B destroy their buffers

» Reliable Service

ramplel.

Imagine a TCP connection is transferring
a file of 6000 bytes. The first byte is
numbered 10010. What are the sequence
numbers for each

segment if data is sent in five segments
with the first four segments carrying
1,000 bytes and the last

segment carrying 2,000 bytes?

Numbering Bytes
* TCP keeps track of segments but no segment #
» Instead, byte numbers are retained

— The bytes being transferred in each connection are
numbered

— Numbering starts with a random number

» After bytes numbered, sequence # assigned to
each segment

* Sequence # for each segment is the number of
the first byte carried in that segment

Solution

The following shows the sequence number for
each segment:

Segment 1 =»
Segment 2
Segment 3
Segment 4

Segment 5

Acknowledgement Number

» Communication in TCP is full duplex

» Each party numbers bytes, usually with a
different starting byte number

» The sequence # in each direction shows the
number of the first byte carried by the segment

» Each party also uses an ack # to confirm bytes
it received

* Ack# indicates # of next byte that the party
expects to receive

Acknowledgement Number
» Ack# is cumulative
1. Party takes # of last byte received
2. Increments by 1

3. Announces this sum as ack#

J

‘the acknowledgment field'i

Cuon

PeS v jre

segment defines the number of the
next byte a party expects to receives.
The acknowledgment number is cumulative.

Flow Control

* Defines amount of data a source can send
before receiving an acknowledgement from the
destination

* TCP uses a sliding window to make
transmission more efficient as well as to
control the flow of data so that the destination
does not become overwhelmed with data.

* Windows marks what data is to be sent, has
been sent but not ack’ed, and what data has
been sent and ack’ed

Sender buffer

Occupied part of the bufTer

sent and
Empry to be Sen, el acknowledged,
filled by process, can be sent immediately | acknowledged | recycled

m|zm|m{’mlm|m|zos-izm|m|zu2|zu| IZLI)

Next byte to be sent
* “circular” buffer shown “flat”

* Sender could sent everything up to and including byte
211 but this could overflow the receiver and force
retransmission

* The sender must adjust itself to the number of locations
available at the receiver

Receiver window

Empty, to receive Consumed and
more bytes from network | Occupied part of the buffer recycled

] |
| |
[I T 1 [[wesfiesfrer]1g]195]104] | |

« Next byte to be consuming by destination process is 194
* Receiver expects byte 200 (was sent but not received)
* How many more bytes can receiver store? 7 (13 —6)

¢ Receiver Window is 7

Sender buffer and sender window

Flow control is achieved if the sender creates a window with a
size less than or equal to the receiver window

Sender windows contains bytes sent and not ack’ed and those that
can be sent

Ex: Sender Windows size = Receiver Window size = 7
Only 4 more bytes can be sent (203-206) because 3 sent already

207-211 cannot be considered for sending until news from recvr.

) Size = receiver window [
I |

[Teti]2i0]200 208 207 [206] 205 [204 [203] 202 [201 [200]]

Mext byte to be semt

Sliding the sender window

, Size = receiver window i

[[2u]zi0]200]208] 207 [206] 205] 204 [208] 202[201 [200]]

t

h. Before

¢ Size = receiver window

| [enzi0]z09]208]207 [206[205]204[203] | | [|

, afer Sender sends 203-204 & receives ack requesting 203
Sender Window can “slide”;

Buffer positions 200-202 recycle

Expanding the sender window

« If the receiving process consumes faster than it receives,
size of receiving window expands

« Situation can be relayed to sender
« Sender can expand its window size
 Here receiver has ack’ed 203-204 and set win size = 10

 Sender has sent 205-209 and added 212-215 and set
window size to 10 like receiver

" Size = receiver window 1
r)

[T T[eis]zia]zia]2i2fznn] 210200 [208]207J206]205] [|

Shrinking the sender window
* If receiving process consumes data slower than it
receives, receiving windows shrinks
» Received informs sender to reduce Sender Window Size

* Ifreceiver had buffer size = 10, received 5 (205-209) and
consumed 1 (205), Receiver Window now 6

» Note sending process produced 3 (216-218)

L Size = receiver window "
I "1

| [eis]ai7]zi6]215[21a[213[212[201 f2i0] [[]

Closing Sender Window

* Occurs when receiver buffer totally full
* Receiver Window size is 0

* Relayed to sender who closes window

— Left and right window boundaries overlap

« Sender cannot send until receiver announces a
nonzero window value

ender window size'is totally

However, the actual window size can be
smaller if there is congestion in the network.

2. The size of the window can be increased
or decreased by the destination.

3. The destination can send an
acknowledgment at any time.

Silly Window Syndrome

Problems can occur when either the sending
process sends slowly or the receiving process
consumes slowly

+ Each situation results in small segment sizes,
which can reduce efficiency

If data only 1 byte, IP header (20) + TCP header
(20) so segment 41 bytes.

This inefficient network usage is called: Silly
Window Syndrome

Nagle’s Algorithm

1. Sending TCP sends first piece of data receiving
from sending process even if only 1 byte
2. Sending TCP then accumulates data in output
buffer until either:
1. Receiving TCP sends acknowledgement OR
2. Enough data has accumulated to fill a max size
segment
3. Step 2 repeats. Segment 3 must be sent when
ack is received by sender for Segment 2

Syndrome Created by Receiver

* When receiving process consumes too slowly
* Clark’s Solution: Receiver sends ack when data
arrives but announces a window size of 0 until:
— enough space to accommodate segment of max size
— OR half of buffer is empty
* Another solution: Delayed Acknowledgement
— Segment not ack’ed immediately
— Delay stops sender from sliding its window
— After data in window is sent, sender stops
— Dis:May force sender to retransmit if delay is too long

Error Control

e TCP must address transmission errors
* Errors must be corrected after detection
e TCP uses three simple tools:
1. Checksum (checksum field)
2. Acknowledgement (no negative ack)
3. Time-out (no ack by timeout implies corrupt or lost)

Sender Recelver

Segment |
Seg

et 2

Se

Bment 3

¥ ack: 1601

Segment 3

OK OK P comupied

Segiment 3, el e

o4 1601, 200 byyes

Tirme-out

Example: Corrupted Segment

OK

Time Tiime

Sender Recoiver

* Out-of-Order Segment

More Error Control
Duplicate Segment

— Can occur when an ack not received by sender before
timeout expires

— When a packet arrives with same seq# as already
received segment, destination TCP discards packet

— Segments can arrive out of order (IP is used)

— Out-of-order segment not ack’ed until all previous
segments are received

— Can’t delay ack too long or retransmission will occur

~
A
=
=
:: Seqment |
8 P
- ;
« - 3 :
]
£ @
<
3 OK oK s«-ul.m-m::
o
=
<
& "
BTN 8, rotraes g,
% @ Time-ou
N
»n
=)
q OK
T Litng:
Lost acknowledgment
Sender

Receiver

ack: 1601

Acknowledgment

" e

OK OK OK

Time Time

TCP timers

Timers

[

I

I I

| Rcl(aﬂ\n:i\\mnl I Persistence I | Keepalive I | Time-waited I

Retransmission Timer
For lost or discarded segment, TCP employs a
transmission timer
Measures waiting time for an ack of a segment
When TCP sends a segment, time is created for
that segment
If an ack is received for the segment before timer
expires, timer is destroyed

If timer expires before ack arrives, the segment is
retransmitted and timer is reset

Retransmission Timer

« Different connections require different
retransmission time settings

« If the retransmission time is set too short, acks
will not have time to return & segments will be
prematurely retransmitted

« If the retransmission time is set too long, sending
process will wait unnecessarily for
retransmissions to occur

+ Retransmission times should not be fixed even
for one connection due to changing traffic levels

Persistence Timer

Addresses zero (0) window size advertisement

Sender will stop sending until ack received from
destination TCP

If ack gets lost, destination TCP will wait
indefinitely for more data from the sender
This deadlock situation must be avoided

After persistence timer elapses, sender sends a
probe segment (only 1 byte)

Probe alerts destination TCP that ack was lost and
must be resent

Keepalive Timer

 Implemented in some TCP servers

* Prevents a long idle connection between two
connected TCP implementations

* Timer is typically set at 2 hours

* After timer elapses, 10 “probe” segments are
rapidly sent

* If no response after 10 probes, it is assumed that
the client is down so connection is terminated

Time-Waited Timer

Used during connection termination

Keeps connection alive long enough for any
remaining FIN segments to arrive (which are then
discarded)

not only does not remove the cause,
it aggravates it.

Multiplicative decrease

Assume maximum window size is 32 segments

Congestion window size
{in segments)

A

26+
s

22
20
18
16
14
12
10
08
06
04

s T T T

02

Time-out

Threshold = 16

e e
1 Z2 3 4 5 6 7 B 9 10 11 12 13 M
Number of transmitted segments

Figure 12-18 . . .
Congestion avoidance strategies

Show Saart and Addditive Increase

Figure 12-19

TCP segment format

Source port address Diestination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN [Reserved| U fa [R Ef s]T Window size
4 bits Gbhits | p |k |h|t ﬁ n 16 bits
Checksum Urgent pointer
16 hits 16 bits
Options & padding

Figure 12-20

Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

URG ACK PSH RST SYN FIN

Figure 12-21

Options

End of option I

No operation

Single-byte

Figure 12-22
End of option option
Options
Code: 0
00000000
a. End of option A Data

L

b. Used for padding

Options
Maximum segment size
Multiple-byte Window scale factor I
Timestamp
Figure 12-23

No operation option

4
OO0

a. No operation option

A 7-byte option m

An 11-byte option An 8-byte option

b. Used to align beginning of an option «. Used to align the next option

Figure 12-24

Maximum segment size option

Code: 2 [Length: 4 I

(0000010 00000100 AL L

I byte 1 byte 2 bytes

Figure 12-25

Window scale factor option

Code: 3
00000011

Length: 3
00000011

Scale factor

1 byte

1 byte

1 byte

Figure 12-26

Timestamp option

Code: § Length: 10
LT 00001010
Timestamp value
Timestamp echo reply

Figure 12-12

Pseudoheader added to the TCP datagram

-
8] 32-bit source [P address

32-bit destination IP sddress

Psec

All s | u""“::‘l'“"“' 1 16t TCP total lengih

=
I

Sumrce port Destination post

Sequence mamber

Acknowledgront number

Header

HLEN | Reserved Control Window sine

Chocksar Urgent poinser

Data and Option

dibed 1o nxake the dal aibliple of 16-bits)

Figure 12-28

Three-way handshaking

Sender Receiver

. S

Segmen 1 5y
Segent 2: SYN + ACK

pment 3: ACK

S0 1200, acr iy

Thme Time

Figure 12-29
Four-way handshaking

Senider Recelver

Segmen; |- FIN

Gegment 2 ACK

4 FIN

Segment
Segment 4: ACK

Tirme Time

Figure 12-30 . .
State transition diagram

CLOSED

Adtive open / SYN

Passive open f— H

Figure 12-31

Client states

— CLOSED
FIN / ACK Active open / SYN
Y
R . .
[WAIT-2] |5YN-SENT|
L
ACK /- Close / SYN1ACK/ACK

Figure 12-32
Server states

CLOSED

Passive open /

SYN/SYN + ACK

FIN / ACK

Figure 12-33
Encapsulation and decapsulation

Application Application
program fprogram

A IR

JF] 1P data e 1P data
wx' Frame data |m Frame data
a. Encapsulation . Decapsulation

Figure 12-34

Multiplexing and demultiplexing

Application Programs Application Programs

e

o i

Figure 12-35
TCP package
Application layer
Messages to and from
application

IT

ic

v Timers TCHs

| (UL}

E [G]¢)

a =

: gt o -l
i '."wl l“ ~ module
i

1

TCP segment TCP segment
1P Layer

Figure 12-36

TCBs
Transmission control blocks
State | Process Pointer Bulfers

