
1

CSC465 – Computer Networks

Dr. J. Harrison

These slides were produced almost entirely from material by Behrouz
Forouzan for the text “TCP/IP Protocol Suite (2nd Edition)”, McGraw

Hill Publisher

Chapter 12

Transmission
Control Protocol

(TCP)

CONTENTSCONTENTS

• PROCESS-TO-PROCESS COMMUNICATION
• TCP SERVICES
• NUMBERING BYTES
• FLOW CONTROL
• SILLY WINDOW SYNDROME
• ERROR CONTROL
• TCP TIMERS

CONTENTS CONTENTS (continued)(continued)

• CONGESTION CONTROL
• SEGMENT
• OPTIONS
• CHECKSUM
• CONNECTION
• STATE TRANSITION DIAGRAM
• TCP OERATION
• TCP PACKAGE

Position of TCP in TCP/IP protocol suite

PROCESS
TO

PROCESS
COMMUNICATION

12.112.1

2

TCP versus IP Port numbers

TCP
SERVICES

12.212.2

Stream delivery

TCP is a byte stream oriented protocol

TCP unlike UDP, which sends decoupled, apparently
unrelated datagrams

Sending and receiving buffers

Handles disparity between speed of the producing and consuming
processes

TCP Segments
• The IP layer, as a service provider for TCP,

needs to send data in packets, not as stream of
bytes

• TCP groups a number of bytes together into a
packet called a segment

• Segment encapsulated into an IP datagram

• Each segment can be a different size

• Process transparent to sending/receiving
processes

3

TCP segments Other TCP Properties
• Full-Duplex Service

– Segments can flow in both directions

– Each TCP has sending & receiving buffers

• Connection-Oriented Service
1. A’s TCP informs B’s TCP & gets approval from B

2. A & B’s TCP exchange data in both directions

3. When both complete A & B destroy their buffers

• Reliable Service

NUMBERING
BYTES

12.312.3

Numbering Bytes
• TCP keeps track of segments but no segment #

• Instead, byte numbers are retained
– The bytes being transferred in each connection are

numbered

– Numbering starts with a random number

• After bytes numbered, sequence # assigned to
each segment

• Sequence # for each segment is the number of
the first byte carried in that segment

Example 1Example 1

Imagine a TCP connection is transferring
a file of 6000 bytes. The first byte is
numbered 10010. What are the sequence
numbers for each
segment if data is sent in five segments
with the first four segments carrying
1,000 bytes and the last
segment carrying 2,000 bytes?

SolutionSolution

The following shows the sequence number for
each segment:

Segment 1 10,010 (10,010 to 11,009)

Segment 2 11,010 (11,010 to 12,009)

Segment 3 12,010 (12,010 to 13,009)

Segment 4 13,010 (13,010 to 14,009)

Segment 5 14,010 (14,010 to 16,009)

4

Acknowledgement Number
• Communication in TCP is full duplex

• Each party numbers bytes, usually with a
different starting byte number

• The sequence # in each direction shows the
number of the first byte carried by the segment

• Each party also uses an ack # to confirm bytes
it received

• Ack# indicates # of next byte that the party
expects to receive

Acknowledgement Number
• Ack# is cumulative

1. Party takes # of last byte received

2. Increments by 1

3. Announces this sum as ack#

The value of the acknowledgment field in a The value of the acknowledgment field in a
segment defines the number of the segment defines the number of the

next byte a party expects to receives. next byte a party expects to receives.
The acknowledgment number is cumulative.The acknowledgment number is cumulative.

FLOW
CONTROL

12.412.4

Flow Control
• Defines amount of data a source can send

before receiving an acknowledgement from the
destination

• TCP uses a sliding window to make
transmission more efficient as well as to
control the flow of data so that the destination
does not become overwhelmed with data.

• Windows marks what data is to be sent, has
been sent but not ack’ed, and what data has
been sent and ack’ed

Sender buffer

• “circular” buffer shown “flat”

• Sender could sent everything up to and including byte
211 but this could overflow the receiver and force
retransmission

• The sender must adjust itself to the number of locations
available at the receiver

5

Receiver window

• Next byte to be consuming by destination process is 194

• Receiver expects byte 200 (was sent but not received)

• How many more bytes can receiver store? 7 (13 – 6)

• Receiver Window is 7

Sender buffer and sender window
Flow control is achieved if the sender creates a window with a
size less than or equal to the receiver window

Sender windows contains bytes sent and not ack’ed and those that
can be sent

Ex: Sender Windows size = Receiver Window size = 7

Only 4 more bytes can be sent (203-206) because 3 sent already

207-211 cannot be considered for sending until news from recvr.

Sliding the sender window

Sender sends 203-204 & receives ack requesting 203

Sender Window can “slide”;

Buffer positions 200-202 recycle

Expanding the sender window

• If the receiving process consumes faster than it receives,
size of receiving window expands

• Situation can be relayed to sender

• Sender can expand its window size

• Here receiver has ack’ed 203-204 and set win size = 10

• Sender has sent 205-209 and added 212-215 and set
window size to 10 like receiver

Shrinking the sender window

• If receiving process consumes data slower than it
receives, receiving windows shrinks

• Received informs sender to reduce Sender Window Size

• If receiver had buffer size = 10, received 5 (205-209) and
consumed 1 (205), Receiver Window now 6

• Note sending process produced 3 (216-218)

Closing Sender Window
• Occurs when receiver buffer totally full

• Receiver Window size is 0

• Relayed to sender who closes window
– Left and right window boundaries overlap

• Sender cannot send until receiver announces a
nonzero window value

6

In TCP, the sender window size is totally In TCP, the sender window size is totally
controlled by the receiver window value.controlled by the receiver window value.
However, the actual window size can be However, the actual window size can be
smaller if there is congestion in the network.smaller if there is congestion in the network.

Some Points about TCP’s Sliding Windows:Some Points about TCP’s Sliding Windows:
1. The source does not have to send a 1. The source does not have to send a

full window’s worth of data.full window’s worth of data.
2. The size of the window can be increased2. The size of the window can be increased

or decreased by the destination.or decreased by the destination.
3. The destination can send an 3. The destination can send an

acknowledgment at any time.acknowledgment at any time.

SILLY
WINDOW

SYNDROME

12.512.5

Silly Window Syndrome
• Problems can occur when either the sending

process sends slowly or the receiving process
consumes slowly

• Each situation results in small segment sizes,
which can reduce efficiency

• If data only 1 byte, IP header (20) + TCP header
(20) so segment 41 bytes.

• This inefficient network usage is called: Silly
Window Syndrome

Nagle’s Algorithm
1. Sending TCP sends first piece of data receiving

from sending process even if only 1 byte
2. Sending TCP then accumulates data in output

buffer until either:
1. Receiving TCP sends acknowledgement OR
2. Enough data has accumulated to fill a max size

segment
3. Step 2 repeats. Segment 3 must be sent when

ack is received by sender for Segment 2

Syndrome Created by Receiver
• When receiving process consumes too slowly
• Clark’s Solution: Receiver sends ack when data

arrives but announces a window size of 0 until:
– enough space to accommodate segment of max size
– OR half of buffer is empty

• Another solution: Delayed Acknowledgement
– Segment not ack’ed immediately
– Delay stops sender from sliding its window
– After data in window is sent, sender stops
– Dis:May force sender to retransmit if delay is too long

ERROR
CONTROL

12.612.6

7

Error Control
• TCP must address transmission errors
• Errors must be corrected after detection
• TCP uses three simple tools:

1. Checksum (checksum field)
2. Acknowledgement (no negative ack)
3. Time-out (no ack by timeout implies corrupt or lost)

E
xa

m
pl

e:
 C

or
ru

pt
ed

 S
eg

m
en

t

L
os

t S
eg

m
en

t (
sa

m
e

as
 c

or
ru

pt
) More Error Control

• Duplicate Segment
– Can occur when an ack not received by sender before

timeout expires
– When a packet arrives with same seq# as already

received segment, destination TCP discards packet
• Out-of-Order Segment

– Segments can arrive out of order (IP is used)
– Out-of-order segment not ack’ed until all previous

segments are received
– Can’t delay ack too long or retransmission will occur

Lost acknowledgment

TCP
TIMERS

12.712.7

8

TCP timers Retransmission Timer
• For lost or discarded segment, TCP employs a

transmission timer
• Measures waiting time for an ack of a segment
• When TCP sends a segment, time is created for

that segment
• If an ack is received for the segment before timer

expires, timer is destroyed
• If timer expires before ack arrives, the segment is

retransmitted and timer is reset

Retransmission Timer
• Different connections require different

retransmission time settings
• If the retransmission time is set too short, acks

will not have time to return & segments will be
prematurely retransmitted

• If the retransmission time is set too long, sending
process will wait unnecessarily for
retransmissions to occur

• Retransmission times should not be fixed even
for one connection due to changing traffic levels

Persistence Timer
• Addresses zero (0) window size advertisement
• Sender will stop sending until ack received from

destination TCP
• If ack gets lost, destination TCP will wait

indefinitely for more data from the sender
• This deadlock situation must be avoided
• After persistence timer elapses, sender sends a

probe segment (only 1 byte)
• Probe alerts destination TCP that ack was lost and

must be resent

Keepalive Timer
• Implemented in some TCP servers
• Prevents a long idle connection between two

connected TCP implementations
• Timer is typically set at 2 hours
• After timer elapses, 10 “probe” segments are

rapidly sent
• If no response after 10 probes, it is assumed that

the client is down so connection is terminated

Time-Waited Timer
• Used during connection termination
• Keeps connection alive long enough for any

remaining FIN segments to arrive (which are then
discarded)

9

CONGESTION
CONTROL

12.812.8

TCP assumes that the cause of TCP assumes that the cause of
a lost segment is due to a lost segment is due to

congestion in the network.congestion in the network.

If the cause of the lost segment If the cause of the lost segment
is congestion, is congestion,

retransmission of the segment retransmission of the segment
not only does not remove the cause, not only does not remove the cause,

it aggravates it.it aggravates it.

Multiplicative decrease
Assume maximum window size is 32 segments

Figure 12-18
Congestion avoidance strategies

SEGMENT

12.912.9

Figure 12-19

TCP segment format

10

Figure 12-20

Control field

OPTIONS

12.1012.10

Figure 12-21

Options
Figure 12-22

End of option option

Figure 12-23

No operation option
Figure 12-24

Maximum segment size option

11

Figure 12-25

Window scale factor option
Figure 12-26

Timestamp option

CHECKSUM

12.1112.11

Figure 12-12

Pseudoheader added to the TCP datagram

CONNECTION

12.1212.12

Figure 12-28

Three-way handshaking

12

Figure 12-29

Four-way handshaking

STATE
TRANSITION

DIAGRAM

12.1312.13

Figure 12-30
State transition diagram

Figure 12-31

Client states

Figure 12-32

Server states

TCP
OPERATION

12.1412.14

13

Figure 12-33

Encapsulation and decapsulation
Figure 12-34

Multiplexing and demultiplexing

TCP
PACKAGE

12.1512.15

Figure 12-35
TCP package

Figure 12-36
TCBs

Transmission control blocks

