

Extra Difficulty Assignment: “All Languages are Decidable”

We give a (supposed) proof that all languages are decidable. We know that the proof must be incorrect, since there are undecidable languages. Your task is to find a flaw in the proof.

Theorem 1 Every language is decidable.

Proof: Let Σ be any alphabet and L any language over Σ. For any integer n, Let Σ^n be the set of all strings of length n over Σ, a finite set of cardinality $|\Sigma|^n$. Let $L_n = L \cap \Sigma^n$, the set of all strings in L of length n. Then L_n is finite, since it cannot be bigger than Σ^n.

Every finite language is decidable. Let P_n be a program which decides L_n. Then the following program decides L.

\[
\begin{align*}
\text{Read } w \in \Sigma^* \\
\text{Let } n = |w|. \\
\text{If}(P_n \text{ accepts } w) \\
\quad \text{Write 1} \\
\text{Else} \\
\quad \text{Write 0}
\end{align*}
\]

Thus, L is decidable. Since L is an arbitrary language, every language is decidable.

Ideas that do not Work

During the exam, many students tried to find the flaw in the proof, but none did. (Although one person had a glimmer of the correct idea.) Here are some of the answers students wrote.

1. “L_n is not finite.” Yes, it is, since it is a subset of the finite set Σ^n.

2. “L_n is not decidable.” Yes, it is. You can find a proof that every finite language is decidable in many places on the internet.

3. “P_n does not exist.” Yes, it does, since by definition, if a language is decidable, it is decided by some program.

4. “The program gets stuck at the if condition.” No it doesn’t, because a program that decides a language halts with any input.

Good Luck!