Computer Science 456/656. Context-Sensitive Grammars

A context sensitive grammar, like all the grammars we have introduced in this course consists of the following parts:

- 1. Σ , the alphabet of terminals.
- 2. V, the alphabet of variables.
- 3. $S \in V$, the start symbol.
- 4. \mathcal{R} , a finite set of rules, or productions.

Terminals and variables together are called *grammar symbols*. What makes the grammar context-sensitive is the set of restictions on the productions. You might find different definitions in various places.

Each production has a left-hand side and a right-hand side. Each production is of the form:

$$\alpha A\beta \to \alpha\gamma\beta$$

where A is a variable, α , β , and γ are strings of grammar symbols, and $\gamma \neq \varepsilon$, except as stated below.

A grammar with only productions of the form described above cannot generate the empty string, and thus not every context-free language would be a context-sensitive language. In order to prevent this, we allow one more production, namely $S \to \varepsilon$, but we make the additional restriction that S cannot appear on the right hand side of any production. With this slight "tweak" to the definition, every context-free language is context-sensitive.

Example

The language $\{a^nb^nc^n\}$ is generated by the following context-sensitive grammar (modified from a Wikipedia page).

- 1. $S \to \varepsilon$
- 2. $S \rightarrow T$
- 3. $S \rightarrow aTBC$
- 4. $T \rightarrow aTBC$
- 5. $S \rightarrow aBC$
- 6. $T \rightarrow aBC$
- 7. $CB \rightarrow HB$
- 8. $HB \rightarrow HC$
- 9. $HC \rightarrow BC$
- 10. $aB \rightarrow ab$ 11. $bB \rightarrow bb$
- 12. $bC \rightarrow bc$
- 13. $cC \rightarrow cc$