1. True or False. If the question is currently open, write “O” or “Open.”

(i) F Every subset of a regular language is regular.
(ii) T Every DFA is an NFA.
(iii) F Let \(L \) be the language over \(\Sigma = \{a, b\} \) consisting of all strings of the form \(a^m b^n \), for any \(m \) and \(n \). Then \(L \) is a regular language.
(iv) F Let \(L \) be the language over \(\Sigma = \{a, b\} \) consisting of all strings of the form \(a^m b^n \), where \(m \geq n \). Then \(L \) is a regular language.
(v) T The Kleene closure of every regular language is regular.
(vi) T The language consisting of all hexadecimal numerals for positive integers \(n \) such that \(n \mod 13 = 7 \) is regular.
(vii) T The complement of every regular language is regular.
(viii) T The union of any two regular languages is regular.
(ix) T There exists a mathematical proposition that is true, but where no proof of the proposition can exist.
(x) F Every language generated by a grammar is regular.
(xi) O There is a \(\mathcal{P}-\text{time} \) algorithm which decides whether two regular expressions are equivalent.
(xii) T If \(x \) and \(y \) are equivalent regular expressions, there is a \(\mathcal{P}-\text{time} \) proof that \(x \) and \(y \) are equivalent.
(xiii) F The set of all decimal numerals for prime numbers is a regular language.
(xiv) T For any non-deterministic finite automaton, there is always a unique minimal deterministic finite automaton equivalent to it.
(xv) T It can always be decided whether two given regular expressions are equivalent.
(xvi) T The complement, over the binary alphabet, of every regular binary language is regular.
(xvii) T If \(L \) is regular, then \(L^R \) is regular.
(xviii) T Every finite language is regular.
(xix) F The set of all palindromes over the binary alphabet is a regular language.
(xx) T The language of all strings over \(\{a, b\} \) which begin and end with the same symbol is regular.
(xxi) T The intersection of any two regular languages is regular.
(xxii) F The set of all strings which could be expressions in a C++ program is a regular language.
(xxiii) T There is no computer program that decides whether two given C++ programs are equivalent.
2. [20 points] Give a regular grammar for the language accepted by the NFA shown in Figure 1.

Let S, A, B be the variables corresponding to the states q_0, q_1, and q_2, respectively. There is one production for each labeled arc, and one λ-production for the final state.

$S \rightarrow bS \mid bA \mid aB \mid cB$

$A \rightarrow aA \mid cB$

$B \rightarrow aB \mid cB \mid bS \mid \lambda$

3. [20 points] Construct a minimal DFA equivalent to the NFA shown in Figure 1.

4. [10 points] Give a grammar for the language of all palindromes over \{a, b\}.

There is no regular grammar for this language. Here is a context-free grammar.

$S \rightarrow aSa \mid bSb \mid a \mid b \mid \lambda$

5. [15 points] What does it mean to say that an NFA M accepts a language L?

If $w \in L$, some computation of M with input w ends at a final state, while if $w \notin L$, there is no computation of M with input w which ends at a final state.
6. [20 points] Prove that $\sqrt{2}$ is irrational.

By contradiction. Assume $\sqrt{2}$ is rational. Then $\sqrt{2} = p/q$ where p, q are integers and gcd $(p, q) = 1$, i.e., p and q have no common divisor larger than 1. Then:

\[
\begin{align*}
\frac{p}{q} &= \sqrt{2} \\
\frac{p^2}{q^2} &= 2 \\
p^2 &= 2q^2
\end{align*}
\]

p^2 is even \implies p is even

\implies $p = 2k$ for some integer k

\[
\begin{align*}
2q^2 &= p^2 \\
&= 4k^2 \\
q^2 &= 2k^2
\end{align*}
\]

q^2 is even \implies q is even

\implies p, q have a common factor of 2, contradiction.