Computer Science 456/656 Fall 2019

Answers to First Examination September 16, 2019

1. True or False. If the question is currently open, write "O" or "Open."
(i) \mathbf{F} Every subset of a regular language is regular.
(ii) \mathbf{T} Every DFA is an NFA.
(iii) \mathbf{F} Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, for any m and n. Then L is a regular language.
(iv) \mathbf{F} Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, where $m \geq n$. Then L is a regular language.
(v) \mathbf{T} The Kleene closure of every regular language is regular.
(vi) \mathbf{T} The language consisting of all hexadecimal numerals for positive integers n such that $n \% 13=7$ is regular.
(vii) \mathbf{T} The complement of every regular language is regular.
(viii) \mathbf{T} The union of any two regular languages is regular.
(ix) \mathbf{T} There exists a mathematical proposition that is true, but where no proof of the proposition can exist.
(x) \mathbf{F} Every language generated by a grammar is regular.
(xi) \mathbf{O} There is a \mathcal{P}-TIME algorithm which decides whether two regular expressions are equivalent.
(xii) T If x and y are equivalent regular expressions, there is a \mathcal{P}-TIME proof that x and y are equivalent.
(xiii) \mathbf{F} The set of all decimal numerals for prime numbers is a regular language.
(xiv) \mathbf{T} For any non-deterministic finite automaton, there is always a unique minimal deterministic finite automaton equivalent to it.
(xv) T It can always be decided whether two given regular expressions are equivalent.
(xvi) \mathbf{T} The complement, over the binary alphabet, of every regular binary language is regular.
(xvii) \mathbf{T} If L is regular, then L^{R} is regular.
(xviii) \mathbf{T} Every finite language is regular.
(xix) \mathbf{F} The set of all palindromes over the binary alphabet is a regular language.
(xx) T The language of all strings over $\{a, b\}$ which begin and end with the same symbol is regular.
(xxi) \mathbf{T} The intersection of any two regular languages is regular.
(xxii) \mathbf{F} The set of all strings which could be expressions in a C++ program is a regular langugage.
(xxiii) \mathbf{T} There is no computer program that decides whether two given $\mathrm{C}++$ programs are equivalent.

Figure 1: The NFA for Problems 2 and 3.
2. [20 points] Give a regular grammar for the language accepted by the NFA shown in Figure 1.

Let S, A, B be the variables corresponding to the states q_{0}, q_{1}, and q_{2}, respectively. There is one production for each labeled arc, and one λ-production for the final state.
$S \rightarrow b S|b A| a B \mid c B$
$A \rightarrow a A \mid c B$
$B \rightarrow a B|c B| b S \mid \lambda$
3. [20 points] Construct a minimal DFA equivalent to the NFA shown in Figure 1.

	a	b	c
0	2	01	2
2	2	0	2
01	12	01	2
12	12	0	2

0 and 01 are equivalent, and 2 and 12 are equivalent. The minimal DFA has two states.
4. [10 points] Give a grammar for the language of all palindromes over $\{a, b\}$.

There is no regular grammar for this language. Here is a context-free grammar.
$S \rightarrow a S a|b S b| a|b| \lambda$
5. [15 points] What does it mean to say that an NFA M accepts a language L ?

If $w \in L$, some computation of M with input w ends at a final state, while if $w \notin L$, there is no computation of M with input w which ends at a final state.
6. [20 points] Prove that $\sqrt{2}$ is irrational.

By contradiction. Assume $\sqrt{2}$ is rational. Then $\sqrt{2}=p / q$ where p, q are integers and $\operatorname{gcd}(p, q)=1$, i.e., p and q have no common divisor larger than 1 . Then:

$$
\begin{aligned}
\frac{p}{q} & =\sqrt{2} \\
\frac{p^{2}}{q^{2}} & =2 \\
p^{2} & =2 q^{2} \\
p^{2} \text { is even } & \Rightarrow p \text { is even } \\
& \Rightarrow p=2 k \text { for some integer } k \\
2 q^{2} & =p^{2} \\
& =4 k^{2} \\
q^{2} & =2 k^{2} \\
q^{2} \text { is even } & \Rightarrow q \text { is even } \\
& \Rightarrow p, q \text { have a common factor of } 2, \text { contradiction. }
\end{aligned}
$$

