Computer Science 456/656 Fall 2019

Answers to Second Examination October 9, 2019

- 1. True or False. If the question is currently open, write "O" or "Open."
 - (i) **O** \mathcal{NP} -TIME = \mathcal{P} -SPACE.
 - (ii) **F** Every context-free language is accepted by some deterministic machine.
 - (iii) **O** There is a deterministic machine that accepts SAT in polynomial time.
 - (iv) **T** Suppose L_1 and L_2 are \mathcal{NP} languages. If there is a \mathcal{P} -TIME reduction of L_1 to L_2 , and L_1 is \mathcal{NP} -complete, then L_2 must be \mathcal{NP} -complete.
 - (v) **O** Suppose L_1 and L_2 are \mathcal{NP} languages. If there is a \mathcal{P} -TIME reduction of L_1 to L_2 , and L_2 is \mathcal{NP} -complete, then L_1 must be \mathcal{NP} -complete.
 - (vi) **T** Let $A = \{a, aa\}$. If L is any decidable language, there is a computable reduction of L to A.
 - (vii) **T** Suppose that, next year, someone succeeded in finding a polynomial time algorithm for the knapsack problem. Then we would know that $\mathcal{P} = \mathcal{NP}$.
 - (viii) **T** If G is an unambiguous context-free grammar, and if $w \in L(G)$, there must be a unique left-most derivation of w using the grammar G.
 - (ix) \mathbf{T} The regular expression equivalence problem is decidable.
 - (x) **T** Every sliding block problem is in the class \mathcal{P} -space.
 - (xi) **T** The following problem is \mathcal{NP} complete: given a rectangle and a set of polygonal tiles, can the tiles all be placed in the rectangle with no overlap?
 - (xii) **T** The concatenation of any two context-free languages is context-free.
 - (xiii) **T** The concatenation of any two \mathcal{NP} languages is \mathcal{NP} .
 - (xiv) **O** If a language is both \mathcal{NP} and $CO-\mathcal{NP}$, it must be \mathcal{P} .
 - (xv) **F** If L is accepted by some machine, then L must be decidable.
 - (xvi) **T** If L is accepted by some machine, and \overline{L} is accepted by some other machine, then L must be decidable.

2. [10 points] Give the definition of the partition problem.

Given a set of weighted items, can the set be partitioned into two subsets of equal weight?

3. [10 points] Give the definition of the language SAT.

The set of all satisfiable Boolean expressions. A Boolean expression E is satisfiable if there is an assignment of truth values to the variables of E such that E is true.

4. [20 points] Write a regular expression equivalent to the NFA shown below.

- 5. In class, we have given two different definitions for the language class \mathcal{NP} -TIME.
 - (a) [20 points] One of these definitions uses the word *non-deterministic*. Write that definition.

A language L is in the class \mathcal{NP} if it can be accepted in polynomial time by a non-deterministic machine.

(b) [20 points] The other definition uses the word *certificate*. Write that definition.

A language L is in the class \mathcal{NP} if there is a deterministic machine V, called the *verifier*, and for every $w \in L$ there is a string c of polynomial length, called the *certificate*, such that V accepts (w, c) in \mathcal{P} time, and such that for every $w \notin L$, and any string c, V does not accept (w, c).

6. [20 points] State the pumping lemma for regular languages.

For any regular language L there is a positive integer p such that, if $w \in L |w| \le p$, there exist string x, y, z, such that the following four conditions hold:

- (a) w = xyz,
- (b) $|xy| \le p$,
- (c) $|y| \ge 1$,
- (d) for any integer $i \ge 0, xy^i z \in L$.

7. [20 points] The following CF grammar is unambiguous. Give a parse (derivation) tree and a rightmost derivation for the string x * y - (x - y * z) using that grammar.

$E \to E + T$ $E(E - T) \Rightarrow E(E - T * F) \Rightarrow$	
$E \to E - T \qquad \qquad E(E - T * I) \Rightarrow E(E - T * z) \Rightarrow$	
$T \to F \qquad \qquad E(E - F * z) \Rightarrow E(E - I * z) \Rightarrow$	
$T \to T \ast F \qquad \qquad E(E - y \ast z) \Rightarrow E(T - y \ast z) \Rightarrow$	
$F \to -F \qquad \qquad E(F - y * z) \Rightarrow E(I - y * z) \Rightarrow$	
$F \to I \qquad \qquad E(x-y*z) \Rightarrow T(x-y*z) \Rightarrow$	
$F \to (E) \qquad \qquad T \ast F(x-y \ast z) \Rightarrow T \ast I(x-y \ast z) \Rightarrow$	
$I \rightarrow x y z \qquad \qquad T \ast y(x - y \ast z) \Rightarrow F \ast y(x - y \ast z) \Rightarrow$	
$I*y(x-y*z) \Rightarrow x*y(x-y*z)$	

