Computer Science 456/656 Fall 2019

Answers to Second Examination October 9, 2019

1. True or False. If the question is currently open, write "O" or "Open."
(i) $\mathbf{O} \mathcal{N} \mathcal{P}$-Time $=\mathcal{P}$-Space.
(ii) \mathbf{F} Every context-free language is accepted by some deterministic machine.
(iii) \mathbf{O} There is a deterministic machine that accepts SAT in polynomial time.
(iv) \mathbf{T} Suppose L_{1} and L_{2} are $\mathcal{N P}$ languages. If there is a \mathcal{P}-TIME reduction of L_{1} to L_{2}, and L_{1} is $\mathcal{N} \mathcal{P}$-complete, then L_{2} must be $\mathcal{N} \mathcal{P}$-complete.
(v) \mathbf{O} Suppose L_{1} and L_{2} are $\mathcal{N P}$ languages. If there is a \mathcal{P}-Time reduction of L_{1} to L_{2}, and L_{2} is $\mathcal{N} \mathcal{P}$-complete, then L_{1} must be $\mathcal{N} \mathcal{P}$-complete.
(vi) \mathbf{T} Let $A=\{a, a a\}$. If L is any decidable language, there is a computable reduction of L to A.
(vii) T Suppose that, next year, someone succeeded in finding a polynomial time algorithm for the knapsack problem. Then we would know that $\mathcal{P}=\mathcal{N} \mathcal{P}$.
(viii) T If G is an unambiguous context-free grammar, and if $w \in L(G)$, there must be a unique left-most derivation of w using the grammar G.
(ix) \mathbf{T} The regular expression equivalence problem is decidable.
(x) T Every sliding block problem is in the class \mathcal{P}-space.
(xi) \mathbf{T} The following problem is $\mathcal{N P}$ complete: given a rectangle and a set of polygonal tiles, can the tiles all be placed in the rectangle with no overlap?
(xii) \mathbf{T} The concatenation of any two context-free languages is context-free.
(xiii) \mathbf{T} The concatenation of any two $\mathcal{N P}$ languages is $\mathcal{N P}$.
(xiv) O If a language is both $\mathcal{N P}$ and co- $\mathcal{N} \mathcal{P}$, it must be \mathcal{P}.
(xv) \mathbf{F} If L is accepted by some machine, then L must be decidable.
(xvi) \mathbf{T} If L is accepted by some machine, and \bar{L} is accepted by some other machine, then L must be decidable.
2. [10 points] Give the definition of the partition problem.

Given a set of weighted items, can the set be partitioned into two subsets of equal weight?
3. [10 points] Give the definition of the language SAT.

The set of all satisfiable Boolean expressions. A Boolean expression E is satisfiable if there is an assignment of truth values to the variables of E such that E is true.
4. [20 points] Write a regular expression equivalent to the NFA shown below.

5. In class, we have given two different definitions for the language class $\mathcal{N} \mathcal{P}$-TIME.
(a) [20 points] One of these definitions uses the word non-deterministic. Write that definition.

A language L is in the class $\mathcal{N} \mathcal{P}$ if it can be accepted in polynomial time by a non-deterministic machine.
(b) [20 points] The other definition uses the word certificate. Write that definition.

A language L is in the class $\mathcal{N P}$ if there is a deterministic machine V, called the verifier, and for every $w \in L$ there is a string c of polynomial length, called the certificate, such that V accepts (w, c) in \mathcal{P} time, and such that for every $w \notin L$, and any string c, V does not accept (w, c).
6. [20 points] State the pumping lemma for regular languages.

For any regular language L there is a positive integer p such that, if $w \in L|w| \leq p$, there exist string x, y, z, such that the following four conditions hold:
(a) $w=x y z$,
(b) $|x y| \leq p$,
(c) $|y| \geq 1$,
(d) for any integer $i \geq 0, x y^{i} z \in L$.
7. [20 points] The following CF grammar is unambiguous. Give a parse (derivation) tree and a rightmost derivation for the string $x * y--(x-y * z)$ using that grammar.
$E \rightarrow T \quad E \Rightarrow E-T \Rightarrow E-F \Rightarrow E--F \Rightarrow E--(E) \Rightarrow$
$E \rightarrow E+T$
$E--(E-T) \Rightarrow E--(E-T * F) \Rightarrow$
$E \rightarrow E-T$
$E--(E-T * I) \Rightarrow E--(E-T * z) \Rightarrow$
$T \rightarrow F$
$E--(E-F * z) \Rightarrow E--(E-I * z) \Rightarrow$
$T \rightarrow T * F$
$E--(E-y * z) \Rightarrow E--(T-y * z) \Rightarrow$
$F \rightarrow-F$
$E--(F-y * z) \Rightarrow E--(I-y * z) \Rightarrow$
$F \rightarrow I$
$E--(x-y * z) \Rightarrow T--(x-y * z) \Rightarrow$
$F \rightarrow(E)$
$T * F--(x-y * z) \Rightarrow T * I--(x-y * z) \Rightarrow$
$I \rightarrow x|y| z$
$T * y--(x-y * z) \Rightarrow F * y--(x-y * z) \Rightarrow$ $I * y--(x-y * z) \Rightarrow x * y--(x-y * z)$

