Computer Science 456/656 Fall 2019

Answers to Third Examination November 18, 2019

- 1. True or False. (5 points each) T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively.
 - (i) **T** The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is \mathcal{P} -TIME..
 - (ii) **O** The problem of whether a given context-**sensitive** grammar generates a given string is in the class \mathcal{NP} .
 - (iii) **F** The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (iv) **T** Every \mathcal{NP} language is decidable.
 - (v) **T** The clique problem is \mathcal{NP} -complete.
 - (vi) **T** The halting problem is \mathcal{NP} -HARD.
 - (vii) **T** The union of two \mathcal{NP} languages must be \mathcal{NP} .
 - (viii) **T** There exists a \mathcal{P} -TIME algorithm which finds a maximal independent set in any **acyclic** graph G.
 - (ix) **O** $\mathcal{NC} = \mathcal{P}$.
 - (x) **T** The traveling salesman problem (TSP) is \mathcal{NP} -complete.
 - (xi) **T** The language consisting of all satisfiable Boolean expressions is \mathcal{NP} -complete.
 - (xii) **T** The Boolean Circuit Problem is in \mathcal{P} -TIME.
 - (xiii) **T** The language consisting of all strings over $\{a, b\}$ which have more a's than b's is context-free.
 - (xiv) **T** 2-SAT is \mathcal{P} -TIME.
 - (xv) **T** Primality, where the input is written in binary, is \mathcal{P} -TIME.
 - (xvi) \mathbf{T} multiplication of base 10 numerals is in \mathcal{NC} .
 - (xvii) **F** The general grammar membership problem is decidable.
- (xviii) **T** EXP-TIME \subseteq EXP-SPACE.
- (xix) \mathbf{T} The regular expression equivalence problem is decidable.
- (xx) **T** Every sliding block problem is in the class \mathcal{P} -SPACE.
- (xxi) **T** The following problem is \mathcal{NP} complete: given a rectangle and a set of polygonal tiles, can the tiles all be placed in the rectangle with no overlap?

- (xxii) **T** The Kleene closure of any context-free language is context-free.
- (xxiii) **T** The concatenation of any two \mathcal{NC} languages is \mathcal{NC} .
- (xxiv) **F** If L is accepted by some machine, then L must be decidable.
- 2. [20 points] Prove that any language that can be enumerated in canonical order by some machine is decidable.

There are two cases. If L is finite, we are done, since every finite language is decidable. If L is infinite, let w_1, w_2, \ldots be the enumeration of L in canonical order. Let P be the following program, which decides whether a given string w is a member of L.

read wfor i = 1 to ∞ $if(w_i = w)$ HALT YES else if $(w_i > w)$ HALT NO

The loop will execute forever, since some subprogram can generated $\{w_i\}$ in canonical order.

3. [20 points] State the pumping lemma for context-free languages.

For any context free language L, there is a positive integer p, such that for any $w \in L$, if $|w| \ge p$, there exist strings u, v, x, y, z such that the following four conditions hold:

- (i) w = uvxyz
- (ii) $|vxy| \le p$
- (iii) $|v| + |y| \ge 1$
- (iv) For any integer $i \ge 0$, $uv^i xy^i z \in L$
- 4. [20 points] Give a \mathcal{P} -TIME reduction of the subset sum problem to the partition problem.

An instance $(K, x_1, x_2, \dots, x_n)$ be of the subset sum problem reduces to $(y_1, y_2, \dots, y_n, y_{n+1}, y_{n+1})$ of the partition problem, where $y_i = x_i$ for $i \leq n$, where $y_{n+1} = K$, and where $y_{n+2} = \sum_{i=1}^n x_i - K$

5. [20 points] Prove that the halting problem is undecidable.

By contradiction. Let $\text{HALT} = \{ \langle M \rangle w \mid M \text{ halts with input } w \}$. Assume HALT is decidable. Let $L_{diag} = \{ \langle M \rangle \mid \langle M \rangle \langle M \rangle \notin \text{HALT} \}$. Since HALT is decidable, L_{diag} is decidable. Let M_{diag} be a machine which accepts L_{diag} . For any machine description $\langle M \rangle$: $\langle M_{diag} \rangle \langle M \rangle \in \text{HALT} \Leftrightarrow \langle M \rangle \in L_{diag}$ by definition of M_{diag} , while $\langle M \rangle \langle M \rangle \in \text{HALT} \Leftrightarrow \langle M \rangle \notin L_{diag}$ by definition of L_{diag} .

By universal instantiation, we can replace $\langle M \rangle$ by $\langle M_{diag} \rangle$ in both of those statements. Thus:

 M_{diag} halts with input $\langle M_{diag} \rangle$ implies $\langle M_{diag} \rangle \in L_{diag}$

 M_{diag} halts with input $\langle M_{diag} \rangle$ implies $\langle M_{diag} \rangle \notin L_{diag}$

Constradiction. Thus HALT is not decidable.