Computer Science 456/656 Fall 2019

Answers to Third Examination November 18, 2019

1. True or False. (5 points each) $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and $\mathcal{N} \mathcal{P}$ denote \mathcal{P}-time and $\mathcal{N} \mathcal{P}$-TIME, respectively.
(i) \mathbf{T} The language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 0\right\}$ is \mathcal{P}-TIME..
(ii) \mathbf{O} The problem of whether a given context-sensitive grammar generates a given string is in the class $\mathcal{N} \mathcal{P}$.
(iii) $\quad \mathbf{F}$ The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is context-free.
(iv) \mathbf{T} Every $\mathcal{N} \mathcal{P}$ language is decidable.
(v) \mathbf{T} The clique problem is $\mathcal{N} \mathcal{P}$-complete.
(vi) \mathbf{T} The halting problem is $\mathcal{N} \mathcal{P}$-HARD.
(vii) \mathbf{T} The union of two $\mathcal{N} \mathcal{P}$ languages must be $\mathcal{N P}$.
(viii) \mathbf{T} There exists a \mathcal{P}-TIme algorithm which finds a maximal independent set in any acyclic graph G.
(ix) $\mathrm{O} \quad \mathcal{N C}=\mathcal{P}$.
(x) \mathbf{T} The traveling salesman problem (TSP) is $\mathcal{N} \mathcal{P}$-complete.
(xi) \mathbf{T} The language consisting of all satisfiable Boolean expressions is $\mathcal{N} \mathcal{P}$-complete.
(xii) T The Boolean Circuit Problem is in \mathcal{P}-time.
(xiii) \mathbf{T} The language consisting of all strings over $\{a, b\}$ which have more a 's than b 's is context-free.
(xiv) $\mathbf{T} \quad 2$-SAT is \mathcal{P}-TIME.
(xv) \mathbf{T} Primality, where the input is written in binary, is \mathcal{P}-time.
(xvi) \mathbf{T} multiplication of base 10 numerals is in $\mathcal{N C}$.
(xvii) F The general grammar membership problem is decidable.
(xviii) T EXP-TIME \subseteq EXP-SPACE.
(xix) \mathbf{T} The regular expression equivalence problem is decidable.
(xx) \mathbf{T} Every sliding block problem is in the class \mathcal{P}-SPACE.
(xxi) \mathbf{T} The following problem is $\mathcal{N} \mathcal{P}$ complete: given a rectangle and a set of polygonal tiles, can the tiles all be placed in the rectangle with no overlap?
(xxii) \mathbf{T} The Kleene closure of any context-free language is context-free.
(xxiii) \mathbf{T} The concatenation of any two $\mathcal{N C}$ languages is $\mathcal{N C}$.
(xxiv) \mathbf{F} If L is accepted by some machine, then L must be decidable.
2. [20 points] Prove that any language that can be enumerated in canonical order by some machine is decidable.

There are two cases. If L is finite, we are done, since every finite language is decidable. If L is infinite, let w_{1}, w_{2}, \ldots be the enumeration of L in canonical order. Let P be the following program, which decides whether a given string w is a member of L.

```
read w
for i}=1\mathrm{ to }
    if( }\mp@subsup{w}{i}{}=w)\mathrm{ HALT YES
    else if ( }\mp@subsup{w}{i}{}>w)\mathrm{ HALT NO
```

The loop will execute forever, since some subprogram can generated $\left\{w_{i}\right\}$ in canonical order.
3. [20 points] State the pumping lemma for context-free languages.

For any context free language L, there is a positive integer p, such that for any $w \in L$, if $|w| \geq p$, there exist strings u, v, x, y, z such that the following four conditions hold:
(i) $w=u v x y z$
(ii) $|v x y| \leq p$
(iii) $|v|+|y| \geq 1$
(iv) For any integer $i \geq 0, u v^{i} x y^{i} z \in L$
4. [20 points] Give a \mathcal{P}-TIME reduction of the subset sum problem to the partition problem.

An instance $\left(K, x_{1}, x_{2}, \ldots x_{n}\right)$ be of the subset sum problem reduces to $\left(y_{1}, y_{2}, \ldots y_{n}, y_{n+1}, y_{n+1}\right)$ of the partition problem, where $y_{i}=x_{i}$ for $i \leq n$, where $y_{n+1}=K$, and where $y_{n+2}=\sum_{i=1}^{n} x_{i}-K$
5. [20 points] Prove that the halting problem is undecidable.

By contradiction. Let HALT $=\{\langle M\rangle w \mid M$ halts with input $w\}$. Assume HALT is decidable. Let $L_{\text {diag }}=$ $\{\langle M\rangle \mid\langle M\rangle\langle M\rangle \notin \mathrm{HALT}\}$. Since HALT is decidable, $L_{\text {diag }}$ is decidable. Let $M_{\text {diag }}$ be a machine which accepts $L_{\text {diag }}$. For any machine description $\langle M\rangle:\left\langle M_{\text {diag }}\right\rangle\langle M\rangle \in$ HALT $\Leftrightarrow\langle M\rangle \in L_{\text {diag }}$ by definition of $M_{\text {diag }}$, while $\langle M\rangle\langle M\rangle \in$ HALT $\Leftrightarrow\langle M\rangle \notin L_{\text {diag }}$ by definition of $L_{\text {diag }}$.

By universal instantiation, we can replace $\langle M\rangle$ by $\left\langle M_{d i a g}\right\rangle$ in both of those statements. Thus:
$M_{\text {diag }}$ halts with input $\left\langle M_{\text {diag }}\right\rangle$ implies $\left\langle M_{\text {diag }}\right\rangle \in L_{\text {diag }}$
$M_{\text {diag }}$ halts with input $\left\langle M_{\text {diag }}\right\rangle$ implies $\left\langle M_{\text {diag }}\right\rangle \notin L_{\text {diag }}$
Constradiction. Thus HALT is not decidable.

