1. A number is called *rational* if it is the quotient of two integers; otherwise it is called irrational. Prove that \(\sqrt{3} \) is irrational. (Read the proof in the book that \(\sqrt{2} \) is irrational.)

Proof: By contradiction. Assume \(\sqrt{3} \) is rational. Then \(\sqrt{3} \) can be written as \(p/q \), where \(p \) and \(q \) are integers. The fraction can be reduced to the lowest terms, meaning that we can assume that the greatest common divisor of \(p \) and \(q \) is 1.

\[
\frac{p}{q} = \sqrt{3}
\]

\[
\frac{p^2}{q^2} = 3
\]

Thus \(p^2 \) is divisible by 3.

Thus \(p \) is divisible by 3.

Write \(p = 3k \) where \(k \) is an integer. Thus

\[
3q^2 = p^2
\]

\[
3q^2 = 9k^2
\]

\[
q^2 = 3k^2
\]

Thus \(q^2 \) is divisible by 3.

Thus \(q \) is divisible by 3.

Thus 3 is a common divisor of \(p \) and \(q \), contradicting the fact that they are relatively prime. \(\blacksquare \)

\[L(G) = \{(ab)^n : n \geq 0\} \]

Or, work Exercise 15 on page 29 of the sixth edition.

\[L(G) = \{(aab)^n : n \geq 0\} \]

Work Exercise 13 of page 38 of the fifth edition, which is Exercise 16 on page 29 of the sixth edition.

\[L(G) = \emptyset \text{ (the empty language)} \]