University of Nevada, Las Vegas Computer Science 456/656 Fall 2019 Answers to Assignment 1: Due Wednesday August 28, 2019

1. A number is called rational if it is the quotient of two integers; otherwise it is called irrational. Prove that $\sqrt{3}$ is irrational. (Read the proof in the book that $\sqrt{2}$ is irrational.)
Proof: By contradiction. Assume $\sqrt{3}$ is rational. Then $\sqrt{3}$ can be written as p / q, where p and q are integers. The fraction can be reduced to the lowest terms, meaning that we can assume that the the greatest common divisor of p and q is 1 .

$$
\begin{aligned}
\frac{p}{q} & =\sqrt{3} \\
\frac{p^{2}}{q^{2}} & =3 \\
p^{2} & =3 q^{2}
\end{aligned}
$$

Thus p^{2} is divisible by 3 .
Thus p is divisible by 3 .
Write $p=3 k$ where k is an integer. Thus

$$
\begin{aligned}
3 q^{2} & =p^{2} \\
3 q^{2} & =9 k^{2} \\
q^{2} & =3 k^{2}
\end{aligned}
$$

Thus q^{2} is divisible by 3 .
Thus q is divisible by 3 .

Thus 3 is a common divisor of p and q, contradicting the fact that they are relatively prime.
2. Work Exercise 312 on page 38 of the fifth edition.

$$
L(G)=\left\{(a b)^{n}: n \geq 0\right\}
$$

Or, work Exercide 15 on page 29 of the sixth edition.

$$
L(G)=\left\{(a a b)^{n}: n \geq 0\right\}
$$

Work Exercide 13 of page 38 of the fifth edition, which is Exercise 16 on page 29 of the sixth edition.

$$
L(G)=\emptyset \text { (the empty language) }
$$

