University of Nevada, Las Vegas Computer Science 456/656 Fall 2019
 Answers to Assignment 2: Due Wednesday September 4, 2019

1. Problem $11(\mathrm{~d})$ on page 38 of the fifth edition, problem $14(\mathrm{~d})$ on page 29 of the sixth edition.

If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA, we can transform M to a regular grammar G which generates $L(M)$, as follows. there is a construction which uses M to define a regular gammar for L. There is one variable of G for each state of M, and there is one production of G for each transition (arc) of M and one production for each final state of M.
(a) Let $Q=\left\{q_{0}, q_{1}, \ldots q_{k}\right\}$. The variables of G will be $A_{0}, A_{1}, \ldots A_{k}$, and A_{0} is the start symbol.
(b) If M has a transition $q_{i} \xrightarrow{a} q_{j}$ for $a \in \Sigma$, then G has a production $A_{i} \rightarrow a A_{j}$.
(c) If M has a transition $q_{i} \xrightarrow{\lambda} q_{j}$, then G has a production $A_{i} \rightarrow A_{j}$.
(d) If $q_{i} \in F$, then G has a production $A_{i} \rightarrow \lambda$.

The language consisting of all strings over $\Sigma=\{a, b\}$ with at least $3 a$'s is accepted by the following DFA (which is, of course, also an NFA):

The grammar G obtained from M by the transformation given in problem 1 has the productions:

$$
\begin{aligned}
A_{0} & \rightarrow b A_{0} \mid a A_{1} \\
A_{1} & \rightarrow b A_{1} \mid a A_{2} \\
A_{2} & \rightarrow b A_{2} \mid a A_{3} \\
A_{3} & \rightarrow a A_{3}\left|b A_{3}\right| \lambda
\end{aligned}
$$

2. Problem 14(a) on page 39 of the fifth edition,

$$
S \rightarrow a S b
$$

$$
S \rightarrow T b
$$

$T \rightarrow T b$
$T \rightarrow \lambda$
3. problem $17(\mathrm{~h})$ on page 29 of the sixth edition. We introduce a third variable, S^{\prime}, which plays the same role as S does in the previous problem. The new start symbol S then generates arbitrarily many copies of S^{\prime}, each of which generates a member of L_{1}.

$$
\begin{aligned}
& S \rightarrow S^{\prime} S \\
& S \rightarrow \lambda \\
& S^{\prime} \rightarrow a S^{\prime} b \\
& S^{\prime} \rightarrow T b \\
& T \rightarrow T b \\
& T \rightarrow \lambda
\end{aligned}
$$

4. Problem 4 on page 44 of the fitth edition, problem 6 on page 35 of the sixth edition.

Instead of showing all 26 letters and ten digits, we simplify the figure by simply writing "digit" instead of $0,1,2,3,4,5,6,7,8,9$, similarly for letters.

We use the transformation given in problem 1, and we introduce two variables, L for letter and D for digit. Our grammar has variables $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}, L, D$, and the start symbol is A_{0}.

$$
\begin{aligned}
& A_{0} \rightarrow L A_{1} \\
& A_{1} \rightarrow D A_{2} \mid L A_{1} \\
& A_{2} \rightarrow D A_{3}\left|L A_{2}\right| \lambda \\
& A_{3} \rightarrow D A_{4}\left|L A_{3}\right| \lambda \\
& A_{4} \rightarrow L A_{4} \mid \lambda \\
& L \rightarrow a|b| c|d| e|f| g|h| i|j| k|l| m|n| o|p| q|r| s|t| u|v| w|x| y \mid z \\
& D \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

5. Problem 2(a) on page 56 of the fifth edition, problem $4(\mathrm{a})$ on page 48 of the sixth edition.

There is a dead state, not shown in the figure.
6. Problem 8(b), 9(a), 9(c) on page 56 of the fifth edition, $8(\mathrm{~b}), 11(\mathrm{a}), 11(\mathrm{c})$ on page 49 of the sixth edition.

7. Problem 26 on page 58 of the fifth edition., problem 28 on page 51 of the sixth edition.

Figure 2.4 shows a DFA with four states, one of which is a dead state. If we apply the algorithm to find the minimal equivalent DFA, we will still have four states. Thus, the answer is no.
8. Problem 6 on page 63 of the fifth edition, problem 3 on page 57 of the sixth edition.

This is the NFA shown in Figure 2-8. Let's call it M.

We now apply the algorithm to convert an NFA into an equivalent DFA. Each state of the DFA is a subset of the set of states of M. Since M has 6 states, there are $2^{6}=64$ such subsets altogether. Fortunately, most of those states are useless, and thus we don't need to include them in our figure. The only ones we show are $\left\{q_{0}\right\},\left\{q_{1}, q_{4}\right\},\left\{q_{2}, q_{5}\right\},\left\{q_{3}, q_{4}\right\},\left\{q_{5}\right\},\left\{q_{4}\right\}$. In the figure, we abbreviate these names as 0,14 , $25,34,5$, and 4 .

9. Problem 12 on pages 64 of the fifth edition, problem 13 on page 57 of the sixth edition.

The safest way to solve this is to compute a DFA equivalent to the NFA. Using the same notation as in the previous problem, we get three states, which we call 0,02 , and 12 . Of these, 0 and 02 are equivalent, hence the NFA in the figure is equivalent to a DFA with only two states:

We can now see that the strings 01001 and 000 are the only ones accepted.

