University of Nevada, Las Vegas Computer Science 456/656 Fall 2019 Answers to Assignments 6 and 7: Due November 13, 2019

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively.
 - (i) F Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
 - (ii) T The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is recursive.
 - (iii) F Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
 - (iv) T The language $\{a^n b^n c^n \mid n \ge 0\}$ is in the class \mathcal{P} -TIME.
 - (v) F Every undecidable problem is \mathcal{NP} -complete.
 - (vi) T The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
 - (vii) F The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (viii) T The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
 - (ix) F Every problem that can be mathematically defined has an algorithmic solution.
 - (x) F The intersection of two undecidable languages is always undecidable.
 - (xi) T Every \mathcal{NP} language is decidable.
 - (xii) T The clique problem is \mathcal{NP} -complete.
 - (xiii) T The traveling salesman problem is \mathcal{NP} -hard.
 - (xiv) T The union of two \mathcal{NP} languages must be \mathcal{NP} .
 - (xv) F OR O The intersection of two \mathcal{NP} -complete languages must be \mathcal{NP} -complete.
 - (xvi) O $\mathcal{NC} = \mathcal{P}$.
 - (xvii) O $\mathcal{P} = \mathcal{NP}$.
- (xviii) O $\mathcal{NP} = \mathcal{P}$ -space
- (xix) O \mathcal{P} -SPACE = EXP-TIME
- (xx) O EXP-TIME = EXP-SPACE
- (xxi) T There is a deterministic parser for any context-free grammar.
- (xxii) T The traveling salesman problem (TSP) is \mathcal{NP} -complete.
- (xxiii) T The knapsack problem is \mathcal{NP} -complete.

- (xxiv) T The language consisting of all satisfiable Boolean expressions is \mathcal{NP} -complete.
- (xxv) T The Boolean Circuit Problem is in \mathcal{P} .
- (xxvi) O The Boolean Circuit Problem is in \mathcal{NC} .
- (xxvii) T The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
- (xxviii) T The language consisting of all strings over $\{a, b\}$ which have more a's than b's is context-free.
- (xxix) T 2-SAT is \mathcal{P} -TIME.
- (xxx) O 3-SAT is \mathcal{P} -TIME.
- (xxxi) T Primality, where the input is written in binary, is \mathcal{P} -TIME.
- (xxxii) F There is a \mathcal{P} -TIME reduction of the halting problem to 3-SAT.
- (xxxiii) T Every context-free language is in \mathcal{P} .
- (xxxiv) T Every context-free language is in \mathcal{NC} .
- (xxxv) T Addition of binary numerals is in \mathcal{NC} .
- (xxxvi) O Every context-sensitive language is in \mathcal{P} .
- (xxxvii) F Every language generated by a general grammar is recursive.
- (xxxviii) T Every language generated by a general grammar is recursively enumerable.
- (xxxix) T Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
 - (xl) T The problem of whether two given context-free grammars generate the same language is $co-\mathcal{RE}$.
 - (xli) T The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (xlii) T The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A *fraction* is a string. "314/100" is in the language, but "22/7" is not.)
 - (xliii) T There exists a polynomial time algorithm which finds the prime factors of any positive integer, where the input is given as a unary ("caveman") numeral.
 - (xliv) T For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable.
 - (xlv) F For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable.
 - (xlvi) O or F If L is any \mathcal{NP} language, there must be a \mathcal{P} -TIME reduction of the partition problem to L.

- (xlvii) O If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} .
- (xlviii) T Recall that if \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L} . Let \mathcal{RE} be the class of all recursively enumerable languages. If L is in \mathcal{RE} and also L is in co- \mathcal{RE} , then L must be decidable.
- (xlix) T Every language is enumerable.
 - (1) F If a language L is undecidable, then there can be no machine that enumerates L.
 - (li) T There exists a mathematical proposition that can be neither proved nor disproved.
 - (lii) T There is a non-recursive function which grows faster than any recursive function.
- (liii) F For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
- (liv) T Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is \mathcal{P} -SPACE-complete.
- (lv) T If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.
- (lvi) O There is a well-defined function f on positive integers, where:

f(n) = 0 if n = 1 f(n) = 1 + f(n/2) if n is even f(n) = 1 + f(3n + 1) if n is odd and greater than 1. For example, f(1) = 0, f(2) = 1, f(3) = 7, f(4) = 2, f(5) = 5, f(6) = 8, f(7) = 16, ... Hint: look on the internet for "Collatz."

- (lvii) F The busy beaver function is recursive.
- (lviii) F The Post correspondence problem is \mathcal{NP} -COMPLETE.
- 2. Suppose x and y are positive integers, and their binary numerals $\langle x \rangle$ and $\langle y \rangle$ each have length n. Then $\langle xy \rangle$, the binary numeral of their product, has length at most 2n. Explain how the problem of computing $\langle xy \rangle$ from $\langle x \rangle$ and $\langle y \rangle$ is in the class \mathcal{NC} .

Using the grade-school algorithm for multiplication, $\langle xy \rangle$ is is obtained by taking the sum of *n n*-bit strings, each of which is either a copy of $\langle x \rangle$ shifted some number of places, or a string of zeros. By adding pairs, we obtain n/2 (n+1)-bit strings. We add those in pairs to obtain n/4 strings, and so forth, until we have $\langle xy \rangle$, one binary string of length 2n. There are $\log n$ of these steps, each of which takes $O(\log n)$ time using n^2 processors. Thus, $\langle xy \rangle$ can be computed in $O(\log^2 n)$ time using n^2 processors.

- 3. Let L be the language generated by the context-free grammar below. What is the minimum pumping length of L? (Note that this grammar does not contain the production $S \rightarrow iS$.) Hint: read http://web.cs.unlv.edu/larmore/Courses/CSC456/pumping.pdf
 - $\begin{array}{l} S \rightarrow wS \\ S \rightarrow iSeS \\ S \rightarrow a \end{array}$

The answer is 3.

Because we are using w in the grammar, we will replace w in the statement of the pumping lemma by s. Case 1. The string contains w. Then w can be eliminated, or replaced with w^i for any i.

Case 2. s does not contain w and has length at least 3. Then s must contain i and e. Consider the bottom-most i in the parse tree. That i must be followed by ae. Write s = uiaex, and let $y = z = \lambda$. Then ux, uiaeiaex, etc. are in L.

4. Explain to me why \mathcal{NP} -TIME $\subseteq \mathcal{P}$ -SPACE.

Let $L \in \mathcal{NP}$ -TIME. Then there is some NTM M and some k such that M accepts any member $w \in L$ within n^k steps for n = |w|. Let g be the guide string of such a computation, a string of length at most n^k .

If |w| = n, generate each guide string of length n^k in canonical order. Emulate M with input w using each guide string, erasing all memory except the last guide string each time, using $O(n^k)$ space. If $w \in L$, there will eventually be an emulation which accepts w, if $w \notin L$, no emulation will accept w. Thus \mathcal{NP} -TIME $\subseteq \mathcal{P}$ -SPACE.

- 5. Recall that a fraction is a string. If x is any real number, let LESS_x be the set of fractions whose values are less than x, and let MORE_x be the set of fractions whose values are more than x.
 - (a) Is it true that, for every real number x, LESS_x is decidable?
 - (b) Is it true that, for every real number x, MORE_x is decidable?
 - (c) Is there a real number x such that $LESS_x$ is decidable but $MORE_x$ is not decidable?
 - (d) Is there a real number x such that $LESS_x$ is recursively enumerable but $MORE_x$ is not recursively enumerable?

Hint: If L is a language over the unary alphabet $\{1\}$, let $x_L = \sum_{i=0}^{\infty} 2^{-a_i}$, where $a_i = 1$ if $1^i \in L$, and $a_i = 0$ if $1^i \notin L$. Equivalently, we write $x_L = \sum_{1^i \in L} 2^{-i}$. Note that $x_L = 0$ if $L = \emptyset$, $x_L = 2$ if $L = \{1\}^*$, and $0 < x_L < 2$ for all other choices of L. Depending on whether L is decidable, or whether L is recursively enumerable, is LESS_{x_L} decidable? Recursively enumerable?

 $LESS_x$ and $MORE_x$ are (trivially) decidable of x is rational, thus, without loss of generality, x is irrational. This implies that $MORE_x$ is the complement of $LESS_x$, which implies that $MORE_x$ is decidable if and only if $LESS_x$ is decidable.

As you might have guessed, LESS_{x_L} is decidable if and only if L is decidable, and LESS_{x_L} is R.E. if and only if L is R.E. Let L be any recursively enumerable, but undecidable, language over the unary alphabet, and let $x = x_L$. Thus the answers to (a), (b), and (c) are no. Since LESS_x is R.E. but not decidable, MORE_x is not R.E. The answer to (d) is thus yes.

- 6. Let L be the following language.
 - (a) If $\mathcal{P} = \mathcal{NP}$, then $L = \{1\}$.
 - (b) If $\mathcal{P} \neq \mathcal{NP}$, then $L = \{0\}$.

Is L decidable? Explain your answer.

L has only one string, hence is finite, hence is decidable.

7. Find a general grammar which generates $\{a^{2^n}\}$.

Let $\Sigma = \{a\}$ and $V = \{S, A, B, C\}$, with productions $S \rightarrow AaB$ $A \rightarrow AC$ $A \rightarrow \lambda$ $Ca \rightarrow aaC$ $CB \rightarrow B$ $B \rightarrow \lambda$ For example: $S \Rightarrow AaB \Rightarrow aB \Rightarrow a$ $S \Rightarrow AaB \Rightarrow ACaB \Rightarrow AaaCB \Rightarrow AaaB \Rightarrow aaB \Rightarrow aa$