
University of Nevada, Las Vegas Computer Science 456/656 Fall 2019

Answers to Assignments 6 and 7: Due November 13, 2019

1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this

time. In the questions below, P and NP denote P-time and NP-time, respectively.

(i) F Every language generated by an unambiguous context-free grammar is accepted by some DPDA.

(ii) T The language {anbncndn | n ≥ 0} is recursive.

(iii) F Let L be the language over {a, b, c} consisting of all strings which have more a’s than b’s and

more b’s than c’s. There is some PDA that accepts L.

(iv) T The language {anbncn | n ≥ 0} is in the class P-time.

(v) F Every undecidable problem is NP-complete.

(vi) T The language {anbn | n ≥ 0} is context-free.

(vii) F The language {anbncn | n ≥ 0} is context-free.

(viii) T The language
{

aibjck | j = i+ k
}

is context-free.

(ix) F Every problem that can be mathematically defined has an algorithmic solution.

(x) F The intersection of two undecidable languages is always undecidable.

(xi) T Every NP language is decidable.

(xii) T The clique problem is NP-complete.

(xiii) T The traveling salesman problem is NP-hard.

(xiv) T The union of two NP languages must be NP.

(xv) F or O The intersection of two NP-complete languages must be NP-complete.

(xvi) O NC = P.

(xvii) O P = NP.

(xviii) O NP = P-space

(xix) O P-space = EXP-time

(xx) O EXP-time = EXP-space

(xxi) T There is a deterministic parser for any context-free grammar.

(xxii) T The traveling salesman problem (TSP) is NP-complete.

(xxiii) T The knapsack problem is NP-complete.



(xxiv) T The language consisting of all satisfiable Boolean expressions is NP-complete.

(xxv) T The Boolean Circuit Problem is in P.

(xxvi) O The Boolean Circuit Problem is in NC.

(xxvii) T The set of strings that your high school algebra teacher would accept as legitimate expressions

is a context-free language.

(xxviii) T The language consisting of all strings over {a, b} which have more a’s than b’s is context-free.

(xxix) T 2-SAT is P–time.

(xxx) O 3-SAT is P–time.

(xxxi) T Primality, where the input is written in binary, is P-time.

(xxxii) F There is a P–time reduction of the halting problem to 3-SAT.

(xxxiii) T Every context-free language is in P.

(xxxiv) T Every context-free language is in NC.

(xxxv) T Addition of binary numerals is in NC.

(xxxvi) O Every context-sensitive language is in P.

(xxxvii) F Every language generated by a general grammar is recursive.

(xxxviii) T Every language generated by a general grammar is recursively enumerable.

(xxxix) T Every language accepted by a non-deterministic machine is accepted by some deterministic

machine.

(xl) T The problem of whether two given context-free grammars generate the same language is co–RE .

(xli) T The problem of whether a given string is generated by a given context-free grammar is decidable.

(xlii) T The language of all fractions (using base 10 numeration) whose values are less than π is

decidable. (A fraction is a string. “314/100” is in the language, but “22/7” is not.)

(xliii) T There exists a polynomial time algorithm which finds the prime factors of any positive integer,

where the input is given as a unary (“caveman”) numeral.

(xliv) T For any two languages L1 and L2, if L1 is undecidable and there is a recursive reduction of L1

to L2, then L2 must be undecidable.

(xlv) F For any two languages L1 and L2, if L2 is undecidable and there is a recursive reduction of L1

to L2, then L1 must be undecidable.

(xlvi) O or F If L is any NP language, there must be a P–time reduction of the partition problem to

L.
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(xlvii) O If L is NP and also co–NP, then L must be P.

(xlviii) T Recall that if L is a class of languages, co–L is defined to be the class of all languages that are

not in L. Let RE be the class of all recursively enumerable languages. If L is in RE and also L is

in co–RE , then L must be decidable.

(xlix) T Every language is enumerable.

(l) F If a language L is undecidable, then there can be no machine that enumerates L.

(li) T There exists a mathematical proposition that can be neither proved nor disproved.

(lii) T There is a non-recursive function which grows faster than any recursive function.

(liii) F For every real number x, there exists a machine that runs forever and outputs the string of

decimal digits of x.

(liv) T Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary

size, is P–space–complete.

(lv) T If two regular expressions are equivalent, there is a polynomial time proof that they are

equivalent.

(lvi) O There is a well-defined function f on positive integers, where:

f(n) = 0 if n = 1

f(n) = 1 + f(n/2) if n is even

f(n) = 1 + f(3n+ 1) if n is odd and greater than 1.

For example, f(1) = 0, f(2) = 1, f(3) = 7, f(4) = 2, f(5) = 5, f(6) = 8, f(7) = 16, . . .

Hint: look on the internet for “Collatz.”

(lvii) F The busy beaver function is recursive.

(lviii) F The Post correspondence problem is NP–complete.

2. Suppose x and y are positive integers, and their binary numerals 〈x〉 and 〈y〉 each have length n. Then

〈xy〉, the binary numeral of their product, has length at most 2n. Explain how the problem of computing

〈xy〉 from 〈x〉 and 〈y〉 is in the class NC.

Using the grade-school algorithm for multiplication, 〈xy〉 is is obtained by taking the sum of n n-bit

strings, each of which is either a copy of 〈x〉 shifted some number of places, or a string of zeros. By

adding pairs, we obtain n/2 (n+1)-bit strings. We add those in pairs to obtain n/4 strings, and so forth,

until we have 〈xy〉, one binary string of length 2n. There are log n of these steps, each of which takes

O(log n) time using n2 processors. Thus, 〈xy〉 can be computed in O(log2 n) time uisng n2 processors.

3. Let L be the language generated by the context-free grammar below. What is the minimum pump-

ing length of L? (Note that this grammar does not contain the production S → iS.) Hint: read

http://web.cs.unlv.edu/larmore/Courses/CSC456/pumping.pdf

S → wS

S → iSeS

S → a
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The answer is 3.

Because we are using w in the grammar, we will replace w in the statement of the pumping lemma by s.

Case 1. The string contains w. Then w can be eliminated, or replaced with wi for any i.

Case 2. s does not contain w and has length at least 3. Then s must contain i and e. Consider the

bottom-most i in the parse tree. That i must be followed by ae. Write s = uiaex, and let y = z = λ.

Then ux, uiaeiaex, etc. are in L.

4. Explain to me why NP–time ⊆ P–space.

Let L ∈ NP–time. Then there is some NTM M and some k such that M accepts any member w ∈ L

within nk steps for n = |w|. Let g be the guide string of such a computation, a string of length at most

nk.

If |w| = n, generate each guide string of length nk in canonical order. Emulate M with input w using

each guide string, erasing all memory except the last guide string each time, using O(nk) space. If

w ∈ L, there will eventually be an emulation which accepts w, if w /∈ L, no emulation will accept w.

Thus NP–time ⊆ P–space.

5. Recall that a fraction is a string. If x is any real number, let LESSx be the set of fractions whose values

are less than x, and let MOREx be the set of fractions whose values are more than x.

(a) Is it true that, for every real number x, LESSx is decidable?

(b) Is it true that, for every real number x, MOREx is decidable?

(c) Is there a real number x such that LESSx is decidable but MOREx is not decidable?

(d) Is there a real number x such that LESSx is recursively enumerable but MOREx is not recursively

enumerable?

Hint: If L is a language over the unary alphabet {1}, let xL =
∑

∞

i=0
2−ai , where ai = 1 if 1i ∈ L,

and ai = 0 if 1i /∈ L. Equivalently, we write xL =
∑

1i∈L 2−i. Note that xL = 0 if L = ∅, xL = 2 if

L = {1}∗, and 0 < xL < 2 for all other choices of L. Depending on whether L is decidable, or whether

L is recursivly enumerable, is LESSxL
decidable? Recursively enumerable?

LESSx and MOREx are (trivially) decidable of x is rational, thus, without loss of generality, x is irra-

tional. This implies that MOREx is the complement of LESSx, which implies that MOREx is decidable

if and only if LESSx is decidable.

As you might have guessed, LESSxL
is decidable if and only if L is decidable, and LESSxL

is R.E. if

and only if L is R.E. Let L be any recursively enumerable, but undecidable, language over the unary

alphabet, and let x = xL. Thus the answers to (a), (b), and (c) are no. Since LESSx is R.E. but not

decidable, MOREx is not R.E. The answer to (d) is thus yes.

6. Let L be the following language.

(a) If P = NP, then L = {1}.

(b) If P 6= NP, then L = {0}.

Is L decidable? Explain your answer.

L has only one string, hence is finite, hence is decidable.
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7. Find a general grammar which generates
{

a2
n}

.

Let Σ = {a} and V = {S,A,B,C}, with productions

S → AaB

A → AC

A → λ

Ca → aaC

CB → B

B → λ

For example:

S⇒AaB⇒aB⇒a

S⇒AaB⇒ACaB⇒AaaCB⇒AaaB⇒aaB⇒aa

S⇒AaB⇒ACaB⇒AaaCB⇒AaaB⇒ACaaB⇒AaaCaB⇒AaaaaCB⇒AaaaaB⇒aaaaB⇒aaaa
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