University of Nevada, Las Vegas Computer Science 456/656 Fall 2019 Answers to Assignments 6 and 7: Due November 13, 2019

1. True or False. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and $\mathcal{N} \mathcal{P}$ denote \mathcal{P}-TIME and $\mathcal{N} \mathcal{P}$-TIME, respectively.
(i) F Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
(ii) T The language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 0\right\}$ is recursive.
(iii) F Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a 's than b 's and more b 's than c 's. There is some PDA that accepts L.
(iv) T The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is in the class \mathcal{P}-Time.
(v) F Every undecidable problem is $\mathcal{N} \mathcal{P}$-complete.
(vi) T The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free.
(vii) F The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is context-free.
(viii) T The language $\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$ is context-free.
(ix) F Every problem that can be mathematically defined has an algorithmic solution.
(x) F The intersection of two undecidable languages is always undecidable.
(xi) T Every $\mathcal{N} \mathcal{P}$ language is decidable.
(xii) T The clique problem is $\mathcal{N} \mathcal{P}$-complete.
(xiii) T The traveling salesman problem is $\mathcal{N} \mathcal{P}$-hard.
(xiv) T The union of two $\mathcal{N P}$ languages must be $\mathcal{N} \mathcal{P}$.
(xv) F OR O The intersection of two $\mathcal{N} \mathcal{P}$-complete languages must be $\mathcal{N} \mathcal{P}$-complete.
(xvi) \quad O $\quad \mathcal{N C}=\mathcal{P}$.
(xvii) \quad O $\mathcal{P}=\mathcal{N} \mathcal{P}$.
(xviii) \quad ○ $\mathcal{N} \mathcal{P}=\mathcal{P}$-SPACE
(xix) \quad O \mathcal{P}-SPACE $=$ EXP-TIME
(xx) O EXP-TIME $=$ EXP-SPACE
(xxi) T There is a deterministic parser for any context-free grammar.
(xxii) T The traveling salesman problem (TSP) is $\mathcal{N} \mathcal{P}$-complete.
(xxiii) T The knapsack problem is $\mathcal{N} \mathcal{P}$-complete.
(xxiv) T The language consisting of all satisfiable Boolean expressions is $\mathcal{N} \mathcal{P}$-complete.
(xxv) T The Boolean Circuit Problem is in \mathcal{P}.
(xxvi) O The Boolean Circuit Problem is in $\mathcal{N C}$.
(xxvii) T The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
(xxviii) T The language consisting of all strings over $\{a, b\}$ which have more a 's than b 's is context-free.
(xxix) T 2-SAT is \mathcal{P}-Time.
(xxx) O 3 -SAT is \mathcal{P}-Time.
(xxxi) T Primality, where the input is written in binary, is \mathcal{P}-TIME.
(xxxii) F There is a \mathcal{P}-TIME reduction of the halting problem to 3-SAT.
(xxxiii) T Every context-free language is in \mathcal{P}.
(xxxiv) T Every context-free language is in $\mathcal{N C}$.
(xxxv) T Addition of binary numerals is in $\mathcal{N C}$.
(xxxvi) O Every context-sensitive language is in \mathcal{P}.
(xxxvii) F Every language generated by a general grammar is recursive.
(xxxviii) T Every language generated by a general grammar is recursively enumerable.
(xxxix) T Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
(xl) T The problem of whether two given context-free grammars generate the same language is co- $\mathcal{R E}$.
(xli) T The problem of whether a given string is generated by a given context-free grammar is decidable.
(xlii) T The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A fraction is a string. " $314 / 100$ " is in the language, but " $22 / 7$ " is not.)
(xliii) T There exists a polynomial time algorithm which finds the prime factors of any positive integer, where the input is given as a unary ("caveman") numeral.
(xliv) T For any two languages L_{1} and L_{2}, if L_{1} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{2} must be undecidable.
(xlv) F For any two languages L_{1} and L_{2}, if L_{2} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{1} must be undecidable.
(xlvi) O OR F If L is any $\mathcal{N} \mathcal{P}$ language, there must be a \mathcal{P}-TIME reduction of the partition problem to L.
(xlvii) O If L is $\mathcal{N \mathcal { P }}$ and also co- $\mathcal{N} \mathcal{P}$, then L must be \mathcal{P}.
(xlviii) T Recall that if \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L}. Let $\mathcal{R E}$ be the class of all recursively enumerable languages. If L is in $\mathcal{R E}$ and also L is in co- $\mathcal{R E}$, then L must be decidable.
(xlix) T Every language is enumerable.
(l) F If a language L is undecidable, then there can be no machine that enumerates L.
(li) T There exists a mathematical proposition that can be neither proved nor disproved.
(lii) T There is a non-recursive function which grows faster than any recursive function.
(liii) F For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
(liv) T Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is \mathcal{P}-SPACE-complete.
(lv) T If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.
(lvi) O There is a well-defined function f on positive integers, where:

$$
f(n)=0 \text { if } n=1
$$

$f(n)=1+f(n / 2)$ if n is even
$f(n)=1+f(3 n+1)$ if n is odd and greater than 1.
For example, $f(1)=0, f(2)=1, f(3)=7, f(4)=2, f(5)=5, f(6)=8, f(7)=16, \ldots$
Hint: look on the internet for "Collatz."
(lvii) F The busy beaver function is recursive.
(lviii) F The Post correspondence problem is $\mathcal{N} \mathcal{P}$-COMPlete.
2. Suppose x and y are positive integers, and their binary numerals $\langle x\rangle$ and $\langle y\rangle$ each have length n. Then $\langle x y\rangle$, the binary numeral of their product, has length at most $2 n$. Explain how the problem of computing $\langle x y\rangle$ from $\langle x\rangle$ and $\langle y\rangle$ is in the class $\mathcal{N C}$.

Using the grade-school algorithm for multiplication, $\langle x y\rangle$ is is obtained by taking the sum of $n n$-bit strings, each of which is either a copy of $\langle x\rangle$ shifted some number of places, or a string of zeros. By adding pairs, we obtain $n / 2(n+1)$-bit strings. We add those in pairs to obtain $n / 4$ strings, and so forth, until we have $\langle x y\rangle$, one binary string of length $2 n$. There are $\log n$ of these steps, each of which takes $O(\log n)$ time using n^{2} processors. Thus, $\langle x y\rangle$ can be computed in $O\left(\log ^{2} n\right)$ time uisng n^{2} processors.
3. Let L be the language generated by the context-free grammar below. What is the minimum pumping length of L ? (Note that this grammar does not contain the production $S \rightarrow i S$.) Hint: read http://web.cs.unlv.edu/larmore/Courses/CSC456/pumping.pdf
$S \rightarrow w S$
$S \rightarrow i S e S$
$S \rightarrow a$

The answer is 3 .
Because we are using w in the grammar, we will replace w in the statement of the pumping lemma by s. Case 1. The string contains w. Then w can be eliminated, or replaced with w^{i} for any i.
Case 2. s does not contain w and has length at least 3. Then s must contain i and e. Consider the bottom-most i in the parse tree. That i must be followed by ae. Write $s=u i a e x$, and let $y=z=\lambda$. Then $u x$, uiaeiaex, etc. are in L.
4. Explain to me why $\mathcal{N} \mathcal{P}$-Time $\subseteq \mathcal{P}$-Space.

Let $L \in \mathcal{N} \mathcal{P}$-Time. Then there is some NTM M and some k such that M accepts any member $w \in L$ within n^{k} steps for $n=|w|$. Let g be the guide string of such a computation, a string of length at most n^{k}.

If $|w|=n$, generate each guide string of length n^{k} in canonical order. Emulate M with input w using each guide string, erasing all memory except the last guide string each time, using $O\left(n^{k}\right)$ space. If $w \in L$, there will eventually be an emulation which accepts w, if $w \notin L$, no emulation will accept w. Thus $\mathcal{N} \mathcal{P}$-TIME $\subseteq \mathcal{P}$-SPACE.
5. Recall that a fraction is a string. If x is any real number, let LESS_{x} be the set of fractions whose values are less than x, and let MORE_{x} be the set of fractions whose values are more than x.
(a) Is it true that, for every real number $x, \operatorname{LESS}_{x}$ is decidable?
(b) Is it true that, for every real number $x, \operatorname{MORE}_{x}$ is decidable?
(c) Is there a real number x such that LESS_{x} is decidable but MORE x is not decidable?
(d) Is there a real number x such that LESS_{x} is recursively enumerable but MORE_{x} is not recursively enumerable?

Hint: If L is a language over the unary alphabet $\{1\}$, let $x_{L}=\sum_{i=0}^{\infty} 2^{-a_{i}}$, where $a_{i}=1$ if $1^{i} \in L$, and $a_{i}=0$ if $1^{i} \notin L$. Equivalently, we write $x_{L}=\sum_{1^{i} \in L} 2^{-i}$. Note that $x_{L}=0$ if $L=\emptyset, x_{L}=2$ if $L=\{1\}^{*}$, and $0<x_{L}<2$ for all other choices of L. Depending on whether L is decidable, or whether L is recursivly enumerable, is $\operatorname{LESS}_{x_{L}}$ decidable? Recursively enumerable?
LESS_{x} and MORE_{x} are (trivially) decidable of x is rational, thus, without loss of generality, x is irrational. This implies that MORE_{x} is the complement of LESS_{x}, which implies that MORE_{x} is decidable if and only if LESS_{x} is decidable.
As you might have guessed, $\operatorname{LESS}_{x_{L}}$ is decidable if and only if L is decidable, and $\operatorname{LESS}_{x_{L}}$ is R.E. if and only if L is R.E. Let L be any recursively enumerable, but undecidable, language over the unary alphabet, and let $x=x_{L}$. Thus the answers to (a), (b), and (c) are no. Since LESS_{x} is R.E. but not decidable, MORE_{x} is not R.E. The answer to (d) is thus yes.
6. Let L be the following language.
(a) If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then $L=\{1\}$.
(b) If $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, then $L=\{0\}$.

Is L decidable? Explain your answer.
L has only one string, hence is finite, hence is decidable.
7. Find a general grammar which generates $\left\{a^{2^{n}}\right\}$.

Let $\Sigma=\{a\}$ and $V=\{S, A, B, C\}$, with productions
$S \rightarrow A a B$
$A \rightarrow A C$
$A \rightarrow \lambda$
$C a \rightarrow a a C$
$C B \rightarrow B$
$B \rightarrow \lambda$
For example:
$S \Rightarrow A a B \Rightarrow a B \Rightarrow a$
$S \Rightarrow A a B \Rightarrow A C a B \Rightarrow A a a C B \Rightarrow A a a B \Rightarrow a a B \Rightarrow a a$
$S \Rightarrow A a B \Rightarrow A C a B \Rightarrow A a a C B \Rightarrow A a a B \Rightarrow A C a a B \Rightarrow A a a C a B \Rightarrow A a a a a C B \Rightarrow A a a a a B \Rightarrow a a a a B \Rightarrow a a a a$

