
A rational number is a number that can be expressed as the ratio of two integers n and m so that n and

m have no common factor. A real number that is not rational is said to be irrational. Show that  is
irrational.

As in all proofs by contradiction, we assume the contrary of what we want to show. Here we

assume that is a rational number so that it can be written as

where n and m are integers without a common factor. Rearranging (1.5), we have

Therefore, n2 must be even. This implies that n is even, so that we can write n = 2k or

and

Therefore, m is even. But this contradicts our assumption that n and m have no common factors. Thus,

m and n in (1.5) cannot exist and  is not a rational number.

This example exhibits the essence of a proof by contradiction. By making a certain assumption we
are led to a contradiction of the assumption or some known fact. If all steps in our argument are
logically sound, we must conclude that our initial assumption was false.

EXERCISES

1. Use induction on the size of S to show that if S is a finite set, then |2S| = 2|S|.

2. Show that if S1 and S2 are finite sets with |S1|= n and |S2| = m, then

3. If S1 and S2 are finite sets, show that |S1 × S2| = |S1||S2|.

4. Consider the relation between two sets defined by Sl = S2 if and only if |S1| = |S2|. Show that this is
an equivalence relation.

5. Prove DeMorgan's laws, Equations (1.2) and (1.3).



6. Occasionally, we need to use the union and intersection symbols in a manner analogous to the
summation sign ∑. We define

with an analogous notation for the intersection of several sets.

With this notation, the general DeMorgan's laws are written as

and

Prove these identities when P is a finite set.

7. Show that

8. Show that Sl = S2 if and only if

9. Show that

10. Show that the distributive law

holds for sets.

11. Show that

12. Show that if S1 ⊆ S2, then .

13. Give conditions on Sl and S2 necessary and sufficient to ensure that


