A rational number is a number that can be expressed as the ratio of two integers n and m so that n and

 m have no common factor. A real number that is not rational is said to be irrational. Show that $\sqrt{2}$ irrational.As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that ${ }^{\sqrt{2}}$ is a rational number so that it can be written as

$$
\begin{equation*}
\sqrt{2}=\frac{n}{m}, \tag{1.5}
\end{equation*}
$$

where n and m are integers without a common factor. Rearranging (1.5), we have

$$
2 m^{2}=n^{2} .
$$

Therefore, n^{2} must be even. This implies that n is even, so that we can write $n=2 k$ or

$$
2 m^{2}=4 k^{2},
$$

and

$$
m^{2}=2 k^{2}
$$

Therefore, m is even. But this contradicts our assumption that n and m have no common factors. Thus, m and n in (1.5) cannot exist and $\sqrt{2}$ is not a rational number.

This example exhibits the essence of a proof by contradiction. By making a certain assumption we are led to a contradiction of the assumption or some known fact. If all steps in our argument are logically sound, we must conclude that our initial assumption was false.

EXERCISES

1. Use induction on the size of S to show that if S is a finite set, then $\left|2^{S}\right|=2^{|S|}$.
2. Show that if S_{1} and S_{2} are finite sets with $\left|S_{1}\right|=n$ and $\left|S_{2}\right|=m$, then

$$
\left|S_{1} \cup S_{2}\right| \leq n+m
$$

3. If S_{1} and S_{2} are finite sets, show that $\left|S_{1} \times S_{2}\right|=\left|S_{1}\right|\left|S_{2}\right|$.
4. Consider the relation between two sets defined by $S_{1}=S_{2}$ if and only if $\left|S_{1}\right|=\left|S_{2}\right|$. Show that this is an equivalence relation.
5. Prove DeMorgan's laws, Equations (1.2) and (1.3).
6. Occasionally, we need to use the union and intersection symbols in a manner analogous to the summation sign \sum. We define

$$
\bigcup_{p \in\{i, j, k, \ldots\}} S_{p}=S_{i} \cup S_{j} \cup S_{k} \cdots
$$

with an analogous notation for the intersection of several sets.
With this notation, the general DeMorgan's laws are written as

$$
\overline{\bigcup_{p \in P} S_{p}}=\bigcap_{p \in P} \overline{S_{p}}
$$

and

$$
\overline{\bigcap_{p \in P} S_{p}}=\bigcup_{p \in P} \overline{S_{p}} .
$$

Prove these identities when P is a finite set.
7. Show that

$$
S_{1} \cup S_{2}=\overline{S_{1} \cap \overline{S_{2}}} .
$$

8. Show that $S_{1}=S_{2}$ if and only if

$$
\left(S_{1} \cap \bar{S}_{2}\right) \cup\left(\bar{S}_{1} \cap S_{2}\right)=\varnothing .
$$

9. Show that

$$
S_{1} \cup S_{2}-\left(S_{1} \cap \bar{S}_{2}\right)=S_{2} .
$$

10. Show that the distributive law

$$
S_{1} \cap\left(S_{2} \cup S_{3}\right)=\left(S_{1} \cap S_{2}\right) \cup\left(S_{1} \cap S_{3}\right)
$$

holds for sets.
11. Show that

$$
S_{1} \times\left(S_{2} \cup S_{3}\right)=\left(S_{1} \times S_{2}\right) \cup\left(S_{1} \times S_{3}\right)
$$

12. Show that if $S_{1} \subseteq S_{2}$, then $\bar{S}_{2} \subseteq \bar{S}_{1}$.
13. Give conditions on S_{1} and S_{2} necessary and sufficient to ensure that

$$
S_{1}=\left(S_{1} \cup S_{2}\right)-S_{2} .
$$

