University of Nevada, Las Vegas Computer Science 456/656 Fall 2019

Constructing a Regular Expression from an NFA

To avoid clutter, we do not show any arc whose label is \emptyset.

1. In the first example, we replace the multiple final states with a single (new) final state. The label of each arc from an original final state to the new final state is λ. Note that the start state is no longer final.

We now eliminate States 3 and 2 using Rule 5.

We now eliminate State 1 using Rule 4.

Using Rule 3, we obtain $\lambda+(a+b b)(b+a b+a b b)^{*} a$, the regular expression for the initial NFA.
2. In this example, there is only one final state, but it is the start state. Introduce a new final state and a λ transition from the start state to the final state. Then, eliminate State 1 using Rule 4.

We obtain the regular expression, $(1+(00 * 1)) *$ by Rule 3 . Why didn't we write $\left(1+\left(00^{*}\right)\right)^{*} \lambda$?
3. Finally, we consider the universal example for three states.

Applying the rules, we obtain an equivalent regular expression

$$
\left(a i c^{*} h\right)^{*}\left(d+i c^{*} g\right)\left(b+f c^{*} g+\left(e+f c^{*} h\right)\left(a+i c^{*} h\right)^{*}\left(d+i c^{*} g\right)\right)^{*}
$$

