Additional Practice Problems

1. True or False. If the question is currently open, write “O” or “Open.”
 (i) _______ Every subset of a regular language is regular.
 (ii) _______ There exists some proposition which is true but which has no proof.
 (iii) _______ The set of all binary numerals for prime numbers is a regular language.
 (iv) _______ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
 (v) _______ It can always be decided, in polynomial time, whether two given regular expressions are equivalent.
 (vi) _______ The halting problem is decidable.
 (vii) _______ The complement, over the binary alphabet, of every regular binary language is regular.
 (viii) _______ The union of any two regular languages is regular.
 (ix) _______ The Kleene closure of any regular language is regular.
 (x) If \(w \) is a string, let \(w^R \) denote the reverse of \(w \). For example, if \(w = \text{said} \) then \(w^R = \text{di}a\text{s} \). If \(L \) is a language \(L^R = \{w^R : w \in L\} \).
 _______ If \(L \) is regular, then \(L^R \) is regular.
 (xi) A string \(w \) is called a palindrome if \(w^R = w \). For example, \(\text{bob} \) is a palindrome.
 _______ The set of all palindromes over the binary alphabet is a regular language.
 (xii) _______ We say a binary string \(w \) is balanced if \(w \) has the same number of 1’s as 0’s.
 _______ The set of balanced binary strings is a regular language.
 (xiii) _______ The intersection of any two regular languages is regular.
 (xiv) _______ The language of all regular expressions over the binary alphabet is a regular language.
 (xv) _______ There is no computer program that decides whether two given C++ programs are equivalent.
 (xvi) _______ If anyone ever proves that \(P = \text{NP} \), then all one-way encoding systems will be insecure.
 (xvii) _______ The set of all binary numerals for prime numbers is a \(\mathcal{P} \)-time language.

2. Draw the state diagram for a minimal DFA that accepts the language described by the regular expression \(a^*b^* \).

3. Give a regular grammar for the language accepted by the NFA shown in Figure 1.
4. Construct a minimal DFA equivalent to the NFA shown in Figure 1.

5. Let L be the language of all binary numerals for positive integers equivalent to 2 modulo 3. Thus, for example, the binary numerals for 2, 5, 8, 11, 14, 17 . . . are in L. We allow a binary numeral to have leading zeros; thus (for example) 001110 $\in L$, since it is a binary numeral for 14. Draw a minimal DFA which accepts L.

6. Give a grammar (not a regular grammar) for the language $L = \{a^n b^n : n \geq 0\}$

7. Name a class of machines that accepts the class of regular languages.
8. Give a regular grammar for the language accepted by the NFA shown below, and draw a state diagram for a minimal equivalent DFA.