Additional Practice Problems

1. True or False. If the question is currently open, write "O" or "Open."
(i) _--_--- Every subset of a regular language is regular.
(ii) -------- There exists some proposition which is true but which has no proof.
(iii) _------ The set of all binary numerals for prime numbers is a regular language.
(iv) _-_-_-_ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
(v) _-_-_-_ It can always be decided, in polynomial time, whether two given regular expressions are equivalent.
(vi) _-_-_-- The halting problem is decidable.
(vii) _-_-_-_ The complement, over the binary alphabet, of every regular binary language is regular.
(viii) ------- The union of any two regular languages is regular.
(ix) --_---- The Kleene closure of any regular language is regular.
(x) If w is a string, let w^{R} denote the reverse of w. For example, if $w=$ said then $w^{R}=$ dias. If L is a language $L^{R}=\left\{w^{R}: w \in L\right\}$.
-------- If L is regular, then L^{R} is regular.
(xi) A string w is called a palindrome if $w^{R}=w$. For example, bob is a palindrome. _-_-_--- The set of all palindromes over the binary alphabet is a regular language.
(xii) We say a binary string w is balanced if w has the same number of 1 's as 0's.
\qquad The set of balanced binary strings is a regular language.
(xiii) _------ The intersection of any two regular languages is regular.
(xiv) ------- The language of all regular expressions over the binary alphabet is a regular language.
(xv) _------ There is no computer program that decides whether two given $\mathrm{C}++$ programs are equivalent.
(xvi) ------- If anyone ever proves that $\mathcal{P}=\mathcal{N} \mathcal{P}$, then all one-way encoding systems will be insecure.
(xvii) -------- The set of all binary numerals for prime numbers is a \mathcal{P}-TIME language.
2. Draw the state diagram for a minimal DFA that accepts the language described by the regular expression $a^{*} b^{*}$
3. Give a regular grammar for the language accepted by the NFA shown in Figure 1.

Figure 1: The NFA for Problems 3 and 4.
4. Construct a minimal DFA equivalent equivalent to the NFA shown in Figure 1.
5. Let L be the language of all binary numerals for positive integers equivalent to 2 modulo 3 . Thus, for example, the binary numerals for $2,5,8,11,14,17 \ldots$ are in L. We allow a binary numeral to have leading zeros; thus (for example) $001110 \in L$, since it is a binary numeral for 14 . Draw a minimal DFA which accepts L.
6. Give a grammar (not a regular grammar) for the language $L=\left\{a^{n} b^{n}: n \geq 0\right\}$
7. Name a class of machines that accepts the class of regular languages.
8. Give a regular grammar for the language accepted by the NFA shown below, and draw a state diagram for a minimal equivalent DFA.

