University of Nevada, Las Vegas Computer Science 456/656 Fall 2020 Assignment 2: Due Friday September 25, 2020

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. Your answers must be written in a pdf file and emailed to the graudate assistant, Shekhar Singh shekhar.singh@unlv.edu by 23:59 September 25. Your file must not exceed 5 megabytes, and must print out to at most 4 pages.

Theorem 1 If a language L is accepted by an NFA M with n states, then n is a pumping length of L.

Proof: Suppose $w \in L$ and $|w| \geq n$. Let $w = a_1 a_2 \cdots a_m$ for $m \geq n$ and $a_i \in \Sigma$ for all *i*. Let $\sigma = q_0 q_1 \ldots q_m$ be a computation of M, which accepts w. Since m + 1 > n, there exist $0 \leq j < k \leq m$ such that $q_j = q_k$, by the pigeonhole principle.¹ If j = 0, let $x = \lambda$, otherwise let $x = a_{j+1} \cdots a_i$. Let $y = a_{i+1} \cdots a_j$. If j = 0, let $z = \lambda$, otherwise let $z = a_{j+1} \cdots a_m$. Note that xyz = w. Let σ_x be the computational path $q_0 \cdots q_{i-1}q_i$, let σ_z be the computational path $q_j q_{j+1} \cdots q_m$, and let σ_y be the path $q_i q_{i+1} \cdots q_{j-1}q_j$, which is a loop since $q_i = q_j$. For any $i \geq 0$, $xy^i z \in L$ since it is accepted by M with the computation $\sigma_x \sigma_y^i \sigma_z$.

1. Let L be the regular language accepted by the following NFA.

$$\underbrace{ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array}$$

- (a) By the theorem, 4 is a pumping length of L. Note that $bbac \in L$. Find a pumpable substring of bbac
- (b) L contains strings of length 3. Show that 3 is not a pumping length for L.
- 2. Let $L = \{ab^n c^m : n \ge m\}$. Use the pumping lemma to prove that L is not regular.
- 3. The language $L = \{a^n b^m c^m d^n : n, m \ge 0\}$ is context-free, and has pumping length 2. Let w = aabbccdd. Find the strings u, v, x, y, z given by the pumping lemma for context-free languages.
- 4. Give a diagram for a PDA which accepts the context-free language given in Problem 3.

¹If n holes hold n + 1 pigeons, then there must be at least one hole that has at least two pigeons.