
University of Nevada, Las Vegas Computer Science 456/656 Fall 2020

Answers to Assignment 4: Due Monday November 9, 2020

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. Your answers

must be written in a pdf file and emailed to the graudate assistant, Shekhar Singh shekhar.singh@unlv.edu

by 23:59 November 6. Your file must not exceed 10 megabytes, and must print out to at most 8 pages.

1. Suppose L is the regular language accepted by an NFA M with p states. Prove that L has [regular]

pumping length p.

Without loss of generality, M has no self-loop transition labeled λ, since that transition would be useless.

Suppose w ∈ L and |w| ≥ p. There is a computation of M which accepts w in at last p steps. Each

step traverses an arc of M , and hence must visit a state at least p+ 1 times. Since M has p states, the

computation must visit some state, say q, at least twice. The portion of the computation between the

two visitations of q corresponds to a non-empty substring of w, which is then a non-empty pumpable

substring.

Furthermore, note that we traverse a loop during the first p steps. Thus, we can be sure that |xy| ≤ p.

steps.

2. Find an NFA with three states whose equivalent minimal DFA has eight states.

a,c a,b,c

a,b

3. Given alphabets Σ1 and Σ2, a homomorphism from Σ1 to Σ2 is a function h : Σ1 → Σ∗

2. For example,

any Huffman code on an alphabet Σ is a homomorphism from Σ to the binary alphabet. If h : Σ1 → Σ∗

2

is a homomorphism and w ∈ Σ∗

1, we define h(w) to be the string obtained by replacing each symbol x of

w by h(x). (For example, if h is the huffman code a 7→ 10, b 7→ 1110, c 7→ 1111, d 7→ 110, e 7→ 0, then

h(bed) = 11100110.) If L ⊆ Σ∗

1, let h(L) = {h(w) : w ∈ L}. If L is regular, is it always true that h(L)

is regular? Why do you believe that?

Suppose that M is an NFA which accepts L. Define a new NFA M2 which accepts h(L) as follows by

replacing the label, say a, of each arc with h(a). It may be necessary to introduce additional states. For

example, suppose h(a) = b, h(b) = λ, and h(c) = ab. An arc labeled a in M becomes an arc labeled b in

M2, an arc labeled b in M becomes an arc labeled λ in M2, and an arc labeled c in M becomes an arc

labeled a to a new state, which is not a final state, followed by an arc labeled c from that new state.

4. What is the minimum [regular] pumping length of the language of all decimal numerals for multiples of

three? Exact answer, please. Warning: The empty string is not a decimal numeral.

There is a DFA with 4 states which accepts the language, so by Problem 1, the minimum pumping length

cannot be more than 4. Since the string 111 is in the language and does not have a pumpable substring,

the minimum pumping length must be greater than 3. Thus, the minimum pumping length is 4.

5. We say that a set D of vertices of a graph G dominates G if every vertex of G is adjacent to some member

of D. The Dominating Set problem is, given a graph G and a number k, does G have a dominationg

set of order (that is, size) k? From what we’ve covered so far in class, we know that SAT, 3-SAT,

Independent set, Partition, Subset Sum, and regular expression equivalence are all NP-complete. Using

that knowledge, prove that the dominating set problem is NP-complete

This is the proof I gave in class:

https://www.chegg.com/homework-help/questions-and-answers/goal-following-questions

-show-dominating-set-problem-np-complete-reduction-3-sat-construct-q24999585

6. What is the minimum [context-free] pumping length of L = LDyck\{λ}?

The answer is 3. L has no strings of length 3, so if w ∈ L and |w| ≥ 3, then |w| ≥ 4, and w must have a

pumpable substring ab.

7. Find a context-free language which is not accepted by any DPDA. Justify your answer.

Let L be the set of palindromes over any alphabet with more than one symbol. L cannot be accepted

by any DPDA, since the machine has no way of knowing when it has reached the middle of the string.

8. Consider the following problems:

(a) The furniture placement problem. Given a room of certain dimensions, and given a set of pieces

of furniture, it is possible to place all the furniture into the room? You are permitted to lower

furniture through the ceiling with a crane.

The answer is that the problem is NP-complete. The problem is clearly NP, since if the furniture

fits, we can verify that fact in polynomial time. We reduce the partition problem to the furniture

moving problem. Supose x1, x2 . . . xn is an instance of the partition problem. We can assume each

number is an integer. Let S =
∑n

i=1. For each i, let fi be a rectangle of dimension 1
4
× xi, and let

the room R be a 1
4
× S

2
rectangle. Note that the total area of the furniture equals the area of the

room, hence a solution would give an exact fit, which implies that each fi must fit into R with its

long side parallel to the long side of R. The top half of the room is a 1
8
× S

2
rectangle and holds

exactly half, measured by area, of the furniture. Thus the set of xi such that fi is in the top half

has sum S

2
.

(b) The furniture moving problem. Given a room of certain dimensions, with a given door, and given

a set of pieces of furniture, is it possible to move all the furniture into the room through the door?

Refer to the Euler diagram of complexity classes handed out earlier, what is the smallest of those

complexity classes that is known to contain the furniture placement problem, and what is the smallest

of those complexity class that is known to contain the furniture moving problem? I am not asking for

proofs.

The answer is P–space complete. I will not give a proof, but you should recognize that the furniture

moving problem is a special case of the sliding block problem, which is knwon to be P–space complete.

2

9. Let L = {anbncn : n ≥ 1}. Let G be the context-sensitive grammar with productions:

S → abc

ab → aaAbb

Ab → bA

Ac → cc

Does G generate L? Justify your answer.

There is a proof that this is a grammar for L, but I would not expect you to write that proof. Instead,

we first note that no string generated by that grammar can contain substring ba, ca, or cb, hence any

string in the language is of the form aibjck, and we give derivations for aabbcc and aaabbbccc.

S ⇒ abc ⇒ aaAbbc ⇒ aabAbc ⇒ aabbAc ⇒ aabbcc

S ⇒ abc ⇒ aaAbbc ⇒ aabAbc ⇒ aabbAc ⇒ aabbcc ⇒ aaaAbbbcc ⇒ aaabAbbcc ⇒ aaabbAbcc ⇒

aaabbbAcc ⇒ aaabbbccc

To prove that i = j = k for any w = aibjck generated by G, we define two invariants:

(a) Inv1: #a = #b

(b) Inv2: #a = #c+ #A

Both invariants hold at the beginning of each derivation, since # a = #b = #c = #A = 0 for S. We can

check, using the production rules, that any step of a derivation maintains both invariants. Thus, at the

end of the derivation both invariants hold, and we have #a = #b by Inv1 and #b = #c by Inv2 since

#A = 0.

10. Prove that the context-free grammar equivalence problem is co-RE.

The grammar equivalence problem corresponds to the language of all strings of the form 〈G1〉〈G2〉 such

that G1 and G2 are context-free grammars. and that L(G1) = L(G2). We can assume that the binary

alphabet is the terminal alphabet of both grammars. To show that language is in co-R.E., we need to

show that its complement is in R.E.

Let L be that complement. Suppose w ∈ L. There are two cases.

Case 1: w = 〈G1〉〈G2〉, where G1 and G2 are context-free grammars and L(G1) 6= L(G2). Choose a

string There must be a string in one language but not the other. The following program accepts L:

For all w ∈ {0.1}∗ in canonical order

Use the CYK algorithm to decide whether w ∈ L(G1)

Use the CYK algorithm to decide whether w ∈ L(G2)

If the two answers are different HALT.

Case 2: w is not of the form 〈G1〉〈G2〉 for context-free grammars G1 and G2. (w could be any nonsense

string.) The fact that w is not of that form can be easily determined, and we are done.

11. Is every decidable language context-sensitive? You may give an answer you find on the internet. If you

do that, give the url.

The following Wikipedia page states that not every decidable language is context-sensitive:

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine

3

