Computer Science 456/656 Fall 2020

Practice for First Examination September 14, 2020

The entire practice examination is 310 points.

1. True or False. [5 points each] $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known to science at this time.
(a) -------- Every subset of a regular language is regular.
(b) --------- The Dyck language is regular.
(c) -------- If a language L is generated by some context-free grammar, then L is accepted by some PDA.
(d) --------- If L is a language accepted by some PDA , then L is generated by some context-free grammar.
(e) --------- The Kleene closure of every context-free language is context-free.
(f) -------- If a language has an unambiguous context-free grammar, then it is is accepted by some deterministic push-down automaton.
(g) -------- If a language has an ambiguous context-free grammar, then it is is not accepted by any deterministic push-down automaton.
(h) -------- There is a PDA that accepts the language consisting of all C++ programs.
(i) -------- Let L be the language over $\Sigma=\{a, b, c\}$ consisting of all strings of the form $a^{n} b^{n} c^{n}$, where $n \geq 0$. Then L is a context-free language.
(j) -------- Let L be the language over $\Sigma=\{a, b, c, d\}$ consisting of all strings of the form $a^{n} b^{m} c^{p} d^{q}$, where $0 \leq n \leq q$ and $0 \leq m \leq p$. Then L is a context-free language.
(k) -------- The intersection of any two context-free languages is context-free.
(l) -------- The union of any two context-free languages is context-free.
(m) -------- The language $\left\{a^{m} b c^{n}: 0 \leq m \leq n\right\}$ is accepted by some DPDA.
(n) -------- The membership problem for context-free languages is decidable.
(o) -------- The equivalence problem for context-free grammars is decidable.
(p) -------- Every DFA is an NFA.
(q) -------- Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, for any m and n. Then L is a regular language.
(r) $\ldots-\ldots$ Let L be the language over $\Sigma=\{a, b\}$ consisting of all strings of the form $a^{m} b^{n}$, where $m \geq n$. Then L is a regular language.
(s) -------- Every regular language is context-free.
(t) -------- The Kleene closure of every regular language is regular.
(u) ------- The language consisting of all hexadecimal numerals for positive integers n such that $n \% 13=7$ is regular.
(v) -------- The complement of every regular language is regular.
(w) -------- The union of any two regular languages is regular.
(x) ------- Every NFA is a DFA.
(y) _--_--- The intersection of any two regular languages is regular.
(z) ___ There exists a mathematical proposition that is true, but where no proof of the proposition can exist.
2. [20 points] Let L be the language consisting of all strings over the binary alphabet whose last three symbols are '010.' Draw an NFA with four states which accepts L.
3. [20 points] Describe the language L generated by the following context-free grammar where $\{a, b\}$ is the set of terminals, $\{S\}$ is the set of variables, S is the start symbol, and the productions are as follows:
4. $S \rightarrow a S b$
5. $S \rightarrow a S$
6. $S \rightarrow \varepsilon$
7. [20 points] Write a regular expression for the language accepted by the NFA shown below.

8. [20 points] Let L be the language consisting of all strings over $\{a, b\}$ which do not contain the substring $a a b$. Write a regular expression for L and draw a minimal DFA which accepts L. (Hint: 3 states.)
9. [40 points] Draw a state diagram for a minimal DFA equivalent to the NFA shown below. Partial credit if you get the first steps correct. λ-transitions are discussed in Section 2.2 of your textbook, and an NFA with a lambda-transtion is given in Figure 2.9. https://www.youtube.com/watch?v=4bjqVsoy6bA is a youtube video that you might want to watch.

10. [5 points] The \qquad algorithm decides whether a given string is a member of a given context-free language.
11. [5 points] \qquad has an unambiguous context-free grammar, but is not accepted by any DPDA.
12. [20 points] Let G be the context-free grammar given below.
$S \rightarrow a$
$S \rightarrow w S$
$S \rightarrow i S$
$S \rightarrow i S e S$
Prove that G is ambiguous by writing two different parse trees for the string iwiaea.
13. [30 points] Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below.
(a) $S \rightarrow a$
(b) $E \rightarrow a$
(c) $S \rightarrow L A$
(d) $E \rightarrow L A$
(e) $L \rightarrow$ (
(f) $A \rightarrow E R$
(g) $R \rightarrow$)
(h) $S \rightarrow P E$
(i) $E \rightarrow P E$
(j) $S \rightarrow E E$
(k) $E \rightarrow E E$
(l) $P \rightarrow E Q$
(m) $Q \rightarrow+$

Use the CYK algorithm to prove that the string $a(a+a)$ is a member of L. Use the figure below for your work. You might want to watch the Youtube video https://www.youtube.com/watch?v=I5E3uU15sjQ.

