University of Nevada, Las Vegas Computer Science 456/656 Fall 2021
Assignment 7: Due Monday November 29, 2021

Name:__

You are permitted to work in groups, get help from others, read books, and use the internet. Post your answers on Canvas as instructed by the graduate assistant, Mr. Singh, by 11:59 PM on the due date.

Some of the problems are to write proofs. Although you may simply copy a proof from my class presentation or from some other source, it would help if you try to understand the proof.

1. Consider the following well-known complexity classes.

\[\mathcal{NC} \subseteq \mathcal{P} \quad \text{time} \subseteq \mathcal{NP} \quad \text{time} \subseteq \mathcal{P} \quad \text{space} \subseteq \mathcal{EXP} \quad \text{time} \subseteq \mathcal{EXP} \quad \text{space} \]

The *mover’s problem* is, given a room with a door and pieces of furniture of various shapes and sizes, can the furniture be moved into the room through the door?

As most locals know, when a new hotel is built on the strip, the furniture for each room on a floor is lowered by crane into the room before the next floor is built. The *crane operator’s problem* is, given a room and pieces of furniture of various shapes and sizes, can the furniture be placed into the room if the room has no ceiling?

For both furniture problems, we assume that no piece of furniture can ever be fully or partially on top of another.

(a) Which of the above complexity classes is the smallest class which is known to contain the mover’s problem?

(b) Which of the above complexity classes is the smallest class which is known to contain the crane operator’s problem?

(c) Which of the above complexity classes is the smallest class which is known to contain the circuit valuation problem, which is the problem of determining the output of a Boolean circuit with given inputs?

(d) *Generalized checkers* is the game of checkers played on an \(n \times n \) board. (The standard game uses an 8 \(\times \) 8 board.) Which of the above complexity classes is the smallest class which is known to contain the problem of determining whether the first player to move, from a given configuration, can win?

2. We do not know for sure that the complexity classes given in problem 1 are all distinct, even though it is “generally believed” that they are. However, we do know, for sure, that they are not all equal. Name two of these classes which are known to be different.

3. Roughly speaking, \(f \) is a *one-way function* if \(f(x) \) can be computed in polynomial time for any string \(x \), but there is no polynomial time randomized algorithm which can invert \(f \); that is, given \(f(x) \), find, with high probability, a string \(x' \) such that \(f(x) = f(x') \). Such a function would be useful in cryptography.
The formal definition is given at https://en.wikipedia.org/wiki/One-way_function There are some functions that are generally believed to be one-way, but no one knows for sure. Prove that if $\mathcal{P} = \mathcal{NP}$, no one-way function exists.
4. The *binary integer factorization* problem is, given a binary numeral for an integer n, and another “benchmark” numeral for an integer a, determine whether n has a factor greater than 1 and less than a.

(a) Prove that the binary integer factorization problem is in \mathcal{NP}. (It is also in co-\mathcal{NP}, but that is harder to prove.)

(b) Show that if integer factorization is \mathcal{P}-time RSA encryption can be broken in polynomial time. (You don’t have to write all the details: a sentence or two will suffice.)
(c) Prove that the binary integer comparison problem is in Nick’s Class. That is, given two binary integers \(\langle n \rangle \) and \(\langle m \rangle \), decide whether \(n < m \).