1. Problem 11(d) on page 38 of the fifth edition, problem 14(d) on page 29 of the sixth edition.

If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA, we can transform M to a regular grammar G which generates $L(M)$, as follows. There is a construction which uses M to define a regular grammar for L. There is one variable of G for each state of M, and there is one production of G for each transition (arc) of M and one production for each final state of M.

(a) Let $Q = \{q_0, q_1, \ldots, q_k\}$. The variables of G will be A_0, A_1, \ldots, A_k, and A_0 is the start symbol.

(b) If M has a transition $q_i \xrightarrow{a} q_j$ for $a \in \Sigma$, then G has a production $A_i \rightarrow aA_j$.

(c) If M has a transition $q_i \xrightarrow{\lambda} q_j$, then G has a production $A_i \rightarrow A_j$.

(d) If $q_i \in F$, then G has a production $A_i \rightarrow \lambda$.

The language consisting of all strings over $\Sigma = \{a, b\}$ with at least 3 a’s is accepted by the following DFA (which is, of course, also an NFA):

![DFA Diagram]

The grammar G obtained from M by the transformation given above has the productions:

- $A_0 \rightarrow bA_0 | aA_1$
- $A_1 \rightarrow bA_1 | aA_2$
- $A_2 \rightarrow bA_2 | aA_3$
- $A_3 \rightarrow aA_3 | bA_3 | \lambda$

2. The versions in the two editions are slightly different. Work either one.

Problem 12 on page 38 of the fifth edition.

$$L(G) = \{(ab)^n : n \geq 0\}$$

Problem 15 on page 29 of the sixth edition.

$$L(G) = \{(aab)^n : n \geq 0\}$$

$$L(G) = \emptyset$$ (the empty language)

L_1 is generated by the following grammar.

\[
S \rightarrow aSb \\
S \rightarrow Tb \\
T \rightarrow Tb \\
T \rightarrow \lambda
\]

We introduce a third variable, S', which plays the same role as S does in the previous problem. The new start symbol S then generates arbitrarily many copies of S', each of which generates a member of L_1.

\[
S \rightarrow S'S \\
S \rightarrow \lambda \\
S' \rightarrow aS'b \\
S' \rightarrow Tb \\
T \rightarrow Tb \\
T \rightarrow \lambda
\]

6. Problem 4 on page 44 of the fifth edition, problem 6 on page 35 of the sixth edition. Instead of showing all 26 letters and ten digits, we simplify the figure by simply writing "digit" instead of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, similarly for letters.

We use the DFA above and we introduce two variables, L for letter and D for digit. Our grammar has variables $A_0, A_1, A_2, A_3, A_4, L, D$, and the start symbol is A_0.

\[
A_0 \rightarrow LA_1 \\
A_1 \rightarrow DA_2|LA_1 \\
A_2 \rightarrow DA_3|LA_2|\lambda \\
A_3 \rightarrow DA_4|LA_3|\lambda \\
A_4 \rightarrow LA_4|\lambda \\
L \rightarrow a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z \\
D \rightarrow 0|1|2|3|4|5|6|7|8|9
\]

There is a dead state, not shown in the figure.

8. Problem 8(b), 9(a), 9(c) on page 56 of the fifth edition, problems 8(b), 11(a), 11(c) on page 49 of the sixth edition.

Figure 2.4 shows a DFA with four states, one of which is a dead state. If we apply the algorithm to find the minimal equivalent DFA, we will still have four states. Thus, the answer is no.

We now apply the algorithm to convert an NFA into an equivalent DFA. Each state of the DFA is a subset of the set of states of M. Since M has 6 states, there are $2^6 = 64$ such subsets altogether. Fortunately, most of those states are useless, and thus we don’t need to include them in our figure. The only ones we show are $\{q_0\}$, $\{q_1, q_4\}$, $\{q_2, q_5\}$, $\{q_3, q_4\}$, $\{q_5\}$, $\{q_4\}$. In the figure, we abbreviate these names as 0, 14, 25, 34, 5, and 4.

The accepted strings are 01001 and 000.