
NC and Dynamic Programming

Nick’s Class

NC, or Nick’s Class, is named after Nick Pippenger, currently on the faculty of Harvey Mudd
College. A language is NC if its membership problem can be solved by a parallel program using
polynomially many processors in polylogarithmic time.
Many of the problems that you are familiar with are in the class NC. For example, the 0/1 version
of the shortest path problem is in NC, and every context-free language is in the class NC. Whether
NC = P–time is an open question of enormous theoretical and practical importance.

NC Functions

Let Σ = {0, 1}, the binary alphabet. Without loss of generality, all strings are i.e. over Σ. i.e.

binary. We consider any mathematical function to be a function f : Σ∗ → Σ∗. The function f is
defined to be P–time if there exists a constant k such that, for any w ∈ Σ∗, f(w) can be computed
by a (single processor) machine in O(nk) steps, where n = |w|, while f is defined to be NC if there
is a k such that, for any w ∈ Σ∗, f(w) can be computed by O(nk) processors in O(logk n) time.

The Circuit Value Problem, or the Boolean Circuit Problem

We say that a P-time language (problem) is P-complete if every P-time language can be reduced
to it by an NC function. We now give a P-complete problem, namely the circuit value problem
(CVP) which is a dynamic programming problem with Boolean variables. An instance of the CVP
consists of a sequence of assignments, where

1. the left side of the ith assignment is the Boolean variable xi,

2. the right side of the ith assignment is one of the following:

(a) 0 (false),

(b) 1 (true),

(c) xj for some j < i,

(d) !xj for some j < i,

(e) xj ∗ xk for some j < i and k < i,

(f) xj + xk for some j < i and k < i.

(g) !xj for some j < i,

We write +, ∗, ! for and, or, not. The answer is the value of the last variable, xn.

The answer is the value of the last variable, xn.
Trivially, CVP is in P. Simply execute the n statements in order. In fact, the CVP is a dynamic
programming problem. It is known that CVP is P-complete, which implies that if CVP ∈ NC then
NC = P–time.

Dynamic Programming Can be NC

.
The CVP is clearly a dynamic programming problem Thus, in general, dynamic programming
problems are not known to be a subclass of NC. However, there are DP problems of importance
that are NC.

1

A Definition of Dynamic Programming

The usual definition of a DP instance I is an acyclic directed graph whose vertices are processes,
which we usually call subproblems. Label these P1, . . . Pt, . . . Pn. The output wt of Pt is computed
from initial inputs together with the outputs of all Pt′ such that there is an arc of I from Pt′ to Pt.
Outputs and inputs are strings, which we can assume are binary. We define the length of I to be
T . For convenience, we assume that Pn is a sink of I, and the output of Pn is the output of I.

Width of a DP Instance. For the rest of this section, we let I be a specific DP instance.
We assume that the computation by each process is NC, that is, Pt computes wt using O(mk)
processors in O(logk m) time, where m is the number of input bits of Pt.
We define a cut C of I to be a partion of the processes into I1 and I2 such that there is no arc
from any member of P2 to any member of P1. Let L be the set of all members of I1 which have
an arc to some member of I2. We define signature (C) to be the concatenation of the outputs of
all members of L, which we think of as the information that flows across the cut. Let Ct be the
cut ({P1, . . . Pt}, {Pt+1, . . . Pn}). Let st = signature (Ct) We define W (I), the width of I to be
maxt

{

2|st|
}

.

Informally, we say that I is thin if W (I) is a polynomial function of n. We will show that a thin
DP problem can be solved by an NC computation.
For 0 ≤ t ≤ n, let St be the set of all possible values of st. For example, S0 is the set of all possible
input strings. Since I is thin, each |St| is a polynomial function of n. Let Gt+1

t : St → St+1 be the
function that computes st+1 from st.
Remark: Gt+1

t is an NC function. I is illustrated by the following diagram.

S0

G1

0−−→ S1

G2

1−−→ S2

G3

2−−→ · · ·
Gn

n−1

−−−→ Sn

Implementation of Composition. We store a function f as a set of ordered pairs, pairs (f) =
{(x, y) : f(x) = y} For example, if f(x) = x2 for x ∈ {−1, 0, 1, 2}, then pairs (f) = {(−1, 1), (0, 0), (1, 1), (2, 4)}.
If f : A → B and g : B → C are functions, let gf : A → C be the composition, where
gf(x) = g(f(x)). We implement the composition using pairs:

pairs (gf) = {(x, z) ∈ A× C : ∃y ∈ B : (x, y) ∈ pairs (f), (y, z) ∈ pairs (g)}

This composition is an NC function with respect to the sizes of the sets A×B and B × C.
For any i < j, we let Gj

i : Si → Sj be the composition Gj
j−1G

j−1

j−2 · · ·G
i+1
i+2G

i+1
i . Composing pairs of

functions, we obtain

S0

G2

0−−→ S2

G4

2−−→ S4

G6

4−−→ · · ·
Gn

n−2

−−−→ Sn

All these functions can be computed simultaneously in polylogarithmic time using polynomially
many processors. Since the size of the domain of Gj

i is polynomial in n, pairs (Gj
i) has polynomial

size.

Continuing, we obtain

S0

G4

0−−→ S4

G8

4−−→ S8

G12

8−−→ · · ·
Gn

n−4

−−−→ Sn

(For convenience, we assume that n is a power of 2.) After log2 n steps, we obtain the function
Gn

0 : S0 → Sn.

The solution to I is then Gn
0 (s0). The entire computation is done in O(logk n) time using O(nk)

processors for some constant k, and hence is NC.

2

Regular Languages are NC

We will show that every regular language L is NC. Let M = (Q,Σ, δ, qzero, F) be a DFA which
accepts M , where Q is the set of states, Σ is the input alphabet, δ : Q × Σ → Q is the transition
function, q0 is the start state, and F ⊆ Q is the set of final states. without loss of generality, L ⊆ Σ∗

where Σ = {0, 1}, the binary alphabet. We give a dynamic program which decides whether a given
string w ∈ Σ∗ is a member of L.

Let n = |w|, and let w[i] be the ith symbol of w. For any a ∈ Σ, let δa : Q → Q be the function
defined by: δa(q) = δ(a, q) for any q ∈ Q. Let I be the dynamic program given by the diagram:

Q
δw1−−→ Q

δw2−−→ Q
δw3−−→ · · ·

δwn−−→ Q

Putting I into the language of the previous section, we have Si = Q and Gi+1
i = δwi

, while
si ∈ Si = Q is the state of M after having read the first i symbols of w. We treat |Q| as a constant,
hence Fn

0 can be computed in polylogarithmic time with polynomially many processors; w ∈ L if
and only if Gn

0 (q0) ∈ F . Thus L is NC.

Adding Integers is NC

The addition problem is, given binary numerals x, y of length n, compute the binary numeral z for
the sum x+ y. Note that z could have langth n+ 1.

Let Σ = {0, 1}, the binary alphabet. Let xi, yi, and zi be the ith bits if x, y, and z, respectively.
In the list below, we think of the bits as integers 0 or 1. We let ci be the ith carry bit from the ith

place to the (i+ 1)st place. We have:

1. xi = (x/2i)%2

2. yi = (y/2i)%2

3. zi = (z/2i)%2

4. c−1 = 0;

5. zi = (xi + yi + ci−1)%2

6. ci = (xi + yi + ci−1)/2

Addition of binary numerals is not a 0/1 problem, since we need to obtain n+ 1 bits. However, it
is still an NC function.

Since x and y are given, we can treat xi and yi as constants. We define the function Gi
i−1 : Σ → Σ

as follows.
Gi+1

i (b) = (b+ xi + yi)/2

Then the following dynamic program computes the last carry bit, cn.

Σ
G1

0−−→ Σ
G2

1−−→ Σ
G3

2−−→ · · ·
Gn

n−1

−−−→ Σ

In terms of the earlier section, Si = Σ and si = ci for all i.

Finishing the Computation The above dynamic programming finds only the last carry bit,
since not all carry bits appear in the computation. We rectify that problem by defining separate
dynamic programs for all ci and running them simultaneously. Once we have all ci stored in an
array, we compute all zi simultaneously in constant time.

3

