## CYK Algorithm Handout

Every Context-free language can be decided in polynomial time, using the CYK (Cook, Younger, and Kuratowski) dynamic programming algorithm.

Notation: If $A$ is a variable of a context-free grammar with terminal alphabet $\Sigma$, we let $L(A)$ denote the set of strings over $\Sigma$ can can be derived from $A$.

Unless you jump through hoops, a CNF grammar cannot generate the empty string, so we assume that $G$ generates $L$
$\{\lambda\}$, i.e. all non-empty strings of $L$.
A Chomsky Normal Form grammar is a CF grammar with only two kinds of productions. The left-handside of one of these productions is, of course, a variable. The right-hand-side is either a terminal or two variables.

Example. The language $L$ of non-empty even length palindromes over $\{a, b\}$ is generated by the grammar $G$ below.
$S \rightarrow a S a$
$S \rightarrow b S b$
$S \rightarrow a a$
$S \rightarrow b b$
In order to use the CYK algorithm, we need a CNF grammar equivalent to $G$, such as
$S \rightarrow A B$
$S \rightarrow A C$
$C \rightarrow S A$
$S \rightarrow B D$
$D \rightarrow S B$
$A \rightarrow a$
$B \rightarrow b$

### 0.1 Subproblems of CYK.

Let $L$ be a context-free language, and $G$ a CNF (Chomsky normal form) grammar for $L$ with terminal alphabet $\Sigma$. An instance of the membership problem for $L$ is a string $w \in \Sigma^{*}$. and the question is, whether $w \in L$.

Let $n=|w|$. We write $w=a_{1} a_{2} \ldots a_{n} ; w$ has $\binom{n+1}{2}$ substrings. For any $1 \leq \ell \leq i \leq n$ let $w_{i, \ell}=$ $a_{i} \ldots a_{i+\ell-1}$, the substring of $w$ of length $\ell$ starting at the $i^{\text {th }}$ symbol of $w$ Note that $w_{i, 1}=a_{i}$.

Let $m$ be the number of variables of $G$. and let $A_{p}$ be the $p^{\text {th }}$ variable. We assume that $A_{1}=S$, the start symbol. Let $\mathcal{S}[p, i, \ell]$ be 1 if $w_{i, \ell} \in L\left(A_{p}\right), 0$ otherwise. There are $m\binom{n+1}{2}$ subproblems, namely to compute the values of $\{\mathcal{S}[p, i, \ell]\}$

We write the dynamic program CYK in pseudocode.

```
for all \(1 \leq p \leq m, 1 \leq \ell \leq i \leq n\)
    \(\mathcal{S}[p, i, \ell]=\) false
for all \(1 \leq p \leq m, 1 \leq i \leq n\)
    if \(\left(A_{p} \rightarrow a_{i}\right) \mathcal{S}[p, i, 1]=\) true
for all \(2 \leq \ell \leq n\)
    for all \(1 \leq i \leq n-\ell\)
for all \(i+1 \leq j \leq n-\ell+1\)
for \(1 \leq p \leq m, 1 \leq q \leq m, 1 \leq r \leq m\)
                    if \(\left(A_{p} \rightarrow A_{q} A_{r}\right.\) and \(\mathcal{S}[q, i, j-i]\) and \(\left.\mathcal{S}[r, j, \ell-j+i]\right)\)
                        \(\mathcal{S}_{[p, i, \ell]}=\) true;
return \(\mathcal{S}[1,1, n]\)
```


## Walking Through CYK by Hand

Recall that $V=\left\{A_{1}, \ldots A_{m}\right\}$ is the alphabet of variables of $G$. We define $\mathcal{V}[i, \ell]$ to be the set of all variables $A_{p}$ such that $w_{i, \ell} \in L\left(A_{p}\right)$. In terms of our $\mathcal{S}$ notation, $\mathcal{V}[i, \ell]$ is the set of all variables $A_{p}$ such that $\mathcal{S}[p, i, \ell]$ is true. Hand execution of CYK consists of computing the sets $\{\mathcal{S}[p, i, \ell]\}$ in order of increasing $\ell$. In textbook and internet explanations of CYK, each of those sets is shown inside a box which is an entry of a triangular matrix, since $i+\ell \leq n+2$, and this matrix is oriented in the usual row and column manner. However, I have found it intuitive to rotate the matrix 45 degrees, as in Figure 1 below.


Figure 1: CYK Matrix
Each box corresponds to one substring of $w$ and holds one of the sets $\mathcal{V}[i, \ell]$ The values of those sets are computed from the bottom up: $w \in L$ if and only if $S$ is a member of the top set, $\mathcal{V}[1, n]$

Example. Let $G$ be the CNF grammar:
$S \rightarrow I S$
$S \rightarrow W S$
$S \rightarrow X Y$
$X \rightarrow I S$
$Y \rightarrow E S$
$S \rightarrow a$
$E \rightarrow e$
$I \rightarrow i$
$W \rightarrow w$
Here is the CYK matrix with the initial string iiwaea written below the first row. The entries of each cell of the matrix are the members of $\mathcal{V}[i, \ell]$ Since $S$ is in the top cell, $w \in L$.


Figure 2: CYK verifying that iiwaea $\in L$.
CYK can then be used to show that the string ieiaea is not in $L$, as shown in Figure 3


Figure 3: CYK verifying that iiwaea $\notin L$.

