
CYK Algorithm Handout

Every Context-free language can be decided in polynomial time, using the CYK (Cook, Younger, and Kura-

towski) dynamic programming algorithm.

Notation: If A is a variable of a context-free grammar with terminal alphabet Σ, we let L(A) denote the

set of strings over Σ can can be derived from A.

Unless you jump through hoops, a CNF grammar cannot generate the empty string, so we assume that G

generates L

{λ}, i.e. all non-empty strings of L.

A Chomsky Normal Form grammar is a CF grammar with only two kinds of productions. The left-hand-

side of one of these productions is, of course, a variable. The right-hand-side is either a terminal or two

variables.

Example. The language L of non-empty even length palindromes over {a, b} is generated by the grammar

G below.

S → aSa

S → bSb

S → aa

S → bb

In order to use the CYK algorithm, we need a CNF grammar equivalent to G, such as

S → AB

S → AC

C → SA

S → BD

D → SB

A → a

B → b

0.1 Subproblems of CYK.

Let L be a context-free language, and G a CNF (Chomsky normal form) grammar for L with terminal alphabet

Σ. An instance of the membership problem for L is a string w ∈ Σ∗. and the question is, whether w ∈ L.

Let n = |w|. We write w = a1a2 . . . an; w has
(

n+1
2

)

substrings. For any 1 ≤ ℓ ≤ i ≤ n let wi,ℓ =

ai . . . ai+ℓ−1, the substring of w of length ℓ starting at the ith symbol of w Note that wi,1 = ai.

Let m be the number of variables of G. and let Ap be the pth variable. We assume that A1 = S, the start

symbol. Let S[p, i, ℓ] be 1 if wi,ℓ ∈ L(Ap), 0 otherwise. There are m
(

n+1
2

)

subproblems, namely to compute

the values of {S[p, i, ℓ]}

We write the dynamic program CYK in pseudocode.

1

for all 1 ≤ p ≤ m, 1 ≤ ℓ ≤ i ≤ n

S[p, i, ℓ] = false

for all 1 ≤ p ≤ m, 1 ≤ i ≤ n

if (Ap → ai) S[p, i, 1] = true

for all 2 ≤ ℓ ≤ n

for all 1 ≤ i ≤ n− ℓ

for all i+ 1 ≤ j ≤ n− ℓ+ 1

for 1 ≤ p ≤ m, 1 ≤ q ≤ m, 1 ≤ r ≤ m

if (Ap → AqAr and S[q, i, j − i] and S[r, j, ℓ− j + i])

S[p,i,ℓ] = true;

return S[1, 1, n]

Walking Through CYK by Hand

Recall that V = {A1, . . . Am} is the alphabet of variables of G. We define V[i, ℓ] to be the set of all variables

Ap such that wi,ℓ ∈ L(Ap). In terms of our S notation, V[i, ℓ] is the set of all variables Ap such that S[p, i, ℓ] is

true. Hand execution of CYK consists of computing the sets {S[p, i, ℓ]} in order of increasing ℓ. In textbook

and internet explanations of CYK, each of those sets is shown inside a box which is an entry of a triangular

matrix, since i+ ℓ ≤ n+ 2, and this matrix is oriented in the usual row and column manner. However, I have

found it intuitive to rotate the matrix 45 degrees, as in Figure 1 below.

i =
 1

i =
 2

i =
 3

i =
 4

i =
 5

i =
 6

l = 6

l = 3

l = 1

l = 2

l = 5

l = 4

Figure 1: CYK Matrix

Each box corresponds to one substring of w and holds one of the sets V[i, ℓ] The values of those sets are

computed from the bottom up: w ∈ L if and only if S is a member of the top set, V[1, n]

2

Example. Let G be the CNF grammar:

S → IS

S → WS

S → XY

X → IS

Y → ES

S → a

E → e

I → i

W → w

Here is the CYK matrix with the initial string iiwaea written below the first row. The entries of each cell of

the matrix are the members of V[i, ℓ] Since S is in the top cell, w ∈ L.

i =
 1

i =
 2

i =
 3

i =
 4

i =
 5

i =
 6

l = 6

l = 3

l = 1

l = 2

l = 5

l = 4

i i w a e a

E SSWII

S
X
S

Y

S

S

X
S

Figure 2: CYK verifying that iiwaea ∈ L.

CYK can then be used to show that the string ieiaea is not in L, as shown in Figure 3

e

I I S E

X
S

E S

aaiei

Y

S

Y

Y

Figure 3: CYK verifying that iiwaea /∈ L.

3

