CYK Algorithm Handout

Every Context-free language can be decided in polynomial time, using the CYK (Cook, Younger, and Kuratowski) dynamic programming algorithm.

Notation: If A is a variable of a context-free grammar with terminal alphabet Σ , we let L(A) denote the set of strings over Σ can can be derived from A.

Unless you jump through hoops, a CNF grammar cannot generate the empty string, so we assume that G generates L

 $\{\lambda\}, i.e.$ all non-empty strings of L.

A Chomsky Normal Form grammar is a CF grammar with only two kinds of productions. The left-handside of one of these productions is, of course, a variable. The right-hand-side is either a terminal or two variables.

Example. The language L of non-empty even length palindromes over $\{a, b\}$ is generated by the grammar G below.

- $S \rightarrow aSa$
- $S \to bSb$
- $S \rightarrow aa$
- $S \to bb$

In order to use the CYK algorithm, we need a CNF grammar equivalent to G, such as

- $S \to AB$
- $S \to AC$
- $C \to SA$
- $S \to BD$
- $D \to SB$
- $A \to a$
- $B \rightarrow b$

0.1 Subproblems of CYK.

Let L be a context-free language, and G a CNF (Chomsky normal form) grammar for L with terminal alphabet Σ . An instance of the membership problem for L is a string $w \in \Sigma^*$. and the question is, whether $w \in L$.

Let n = |w|. We write $w = a_1 a_2 \dots a_n$; w has $\binom{n+1}{2}$ substrings. For any $1 \le \ell \le i \le n$ let $w_{i,\ell} = a_i \dots a_{i+\ell-1}$, the substring of w of length ℓ starting at the *i*th symbol of w Note that $w_{i,1} = a_i$.

Let *m* be the number of variables of *G*. and let A_p be the p^{th} variable. We assume that $A_1 = S$, the start symbol. Let $S[p, i, \ell]$ be 1 if $w_{i,\ell} \in L(A_p)$, 0 otherwise. There are $m\binom{n+1}{2}$ subproblems, namely to compute the values of $\{S[p, i, \ell]\}$

We write the dynamic program CYK in pseudocode.

for all $1 \le p \le m, 1 \le \ell \le i \le n$ $\mathcal{S}[p, i, \ell] = \text{false}$ for all $1 \le p \le m, 1 \le i \le n$ if $(A_p \to a_i) \ \mathcal{S}[p, i, 1] = \text{true}$ for all $2 \le \ell \le n$ for all $1 \le i \le n - \ell$ for all $i + 1 \le j \le n - \ell + 1$ for $1 \le p \le m, 1 \le q \le m, 1 \le r \le m$ if $(A_p \to A_q A_r \text{ and } \mathcal{S}[q, i, j - i] \text{ and } \mathcal{S}[r, j, \ell - j + i])$ $\mathcal{S}_{[p, i, \ell]} = \text{true};$ return $\mathcal{S}[1, 1, n]$

Walking Through CYK by Hand

Recall that $V = \{A_1, \ldots, A_m\}$ is the alphabet of variables of G. We define $\mathcal{V}[i, \ell]$ to be the set of all variables A_p such that $w_{i,\ell} \in L(A_p)$. In terms of our S notation, $\mathcal{V}[i, \ell]$ is the set of all variables A_p such that $S[p, i, \ell]$ is true. Hand execution of CYK consists of computing the sets $\{S[p, i, \ell]\}$ in order of increasing ℓ . In textbook and internet explanations of CYK, each of those sets is shown inside a box which is an entry of a triangular matrix, since $i + \ell \leq n + 2$, and this matrix is oriented in the usual row and column manner. However, I have found it intuitive to rotate the matrix 45 degrees, as in Figure 1 below.

Figure 1: CYK Matrix

Each box corresponds to one substring of w and holds one of the sets $\mathcal{V}[i, \ell]$ The values of those sets are computed from the bottom up: $w \in L$ if and only if S is a member of the top set, $\mathcal{V}[1, n]$

Example. Let G be the CNF grammar: $S \rightarrow IS$ $S \rightarrow WS$ $S \rightarrow XY$ $X \rightarrow IS$ $Y \rightarrow ES$ $S \rightarrow a$ $E \rightarrow e$ $I \rightarrow i$ $W \rightarrow w$

Here is the CYK matrix with the initial string *iiwaea* written below the first row. The entries of each cell of the matrix are the members of $\mathcal{V}[i, \ell]$ Since S is in the top cell, $w \in L$.

Figure 2: CYK verifying that $iiwaea \in L$.

CYK can then be used to show that the string *ieiaea* is not in L, as shown in Figure 3

Figure 3: CYK verifying that $iiwaea \notin L$.