Pumping Lemmas

The main usefulness of the two pumping lemmas is to prove that a particular language is not regular, or context-free, as the case may be. Each lemma states that every language in the class has a certain property, and thus if we can prove that a given language L does not have that property, L is not in the class.

Lemma 1 (Pumping Lemma for Regular Languages) If L is a regular language, there exists a positive integer p, called the pumping length of L, such that for any string $w \in L$ whose length is at least p, there exist strings x, y, z such that the following conditions hold.

1. $w=x y z$
2. $|y| \geq 1$
3. $|x y| \leq p$
4. for any $i \geq 0, x y^{i} z \in L$.

Note that the the value of p is not unique: if p is a pumping length of L, so is every integer larger than p. There is a minimum pumping length.

Example

Let L be the language of all base 2 numerals for multiples of 5 , where leading zeros are not allowed. The minimum pumping length is 5 . We won't prove that, but for example, if $w=11001$, which means 25 , we let $x=1, y=10$, and $z=01$. The first three conditions obviously hold. If we let $i=0$, we get $x z=101$, which means 5 , while if $i=2$ or $i=3$, we get $x y^{2} z=1101001$ which means 105 , or $x y^{3} z=110101001$ which means 425 . The pumping length cannot be 4 , since 1111, which means 15 , does not have a pumpable substring. Thus, 5 is minimum.
Another example is $w=1110011$, which means 115 . Let $x=11, y=100$, and $z=11$.

Lemma 2 (Pumping Lemma for Context-Free Languages) If L is a context-free language, there exists a positive integer p, called the pumping length of L, such that for any string $w \in L$ whose length is at least p, there exist strings u, v, x, y, z such that the following conditions hold.

1. $w=u v x y z$
2. $|v|+|y| \geq 1$
3. $|v x y| \leq p$
4. for any $i \geq 0, u v^{i} x y^{i} z \in L$.

Note that the the value of p is not unique: if p is a pumping length of L, so is every integer larger than p. There is a minimum pumping length.

Example

Let L be the language consisting of all palindromes over $\{a, b\}$. The following is an unambiguous grammar for L.
$S->a S a|b S b| a|b| \lambda$
What is the minimum pumping length of L ?
The answer is 3 . If a palindrome w has even length, the substring $a a$ or $b b$ in the middle of the string. That is, $w=u a a u^{R}$ or $w=u b b u^{R}$. Suppose $w=u a a u^{R}$. We let $u=u, v=a$, $x=\lambda, y=a$, and $z=u^{\mathrm{R}}$. The first three conditions are obviously satisfied. For any $i \geq 0$, $u v^{i} x y^{i} z=u a^{i} a^{i} u^{R} \in L$. The case that $w=u b b u^{R}$ is similar.
If w has odd length, then there are four possibilities:
$w=u a a a u^{R}$
$w=u a b a u^{R}$
$w=u b a b u^{R}$
$w=u b b b u^{R}$
In the first case, we let $u=u, x=a, y=a$, and $z=u^{R}$. In the second case, we let $u=u, x=a$, $y=b$, and $z=u^{R}$. The four conditions are satisfied. The other two cases are similar.

The minimum pumping length cannot be 2 , because $w=a b a \in L$, and the four conditions cannot be fulfilled for w with $p=2$.

