University of Nevada, Las Vegas Computer Science 456/656 Fall 2020

Practice for Final Examination December 8, 2021

The entire practice examination is 475 points. The real examination will be shorter.

- 1. True/False/Open See tfl.pdf and tfll.pdf for more T/F questions.
 - (i) _____ Every subset of a regular language is regular.
 - (ii) $_$ Every context-free language is \mathcal{NC} .
 - (iii) $\longrightarrow \mathcal{P}$ -space = EXP-space.
 - (iv) _____ Given a regular expression, an equivalent minimal DFA can always be constructed in polynomial time.
 - (v) _____ $L = \{0^n 1^n 0^n 1^n : n \ge 1\}$ is context-sensitive.
 - (vi) _____ The intersection of two context-free lanuages must be context-free.
 - (vii) _____ The concatenation of two context-free languages must be context-free.
 - (viii) _____ The concatenation of two context-sensitive languages is context-sensitive.
 - (ix) _____ The intersection of two co-RE languages is co-RE.
 - (x) ______ Suppose a language L has matching delimeters. That is, its alphabet contains symbols ℓ and r, such that, in each $w \in L$, any instance of ℓ must be uniquely matched with an instance or r to its right. Then it is impossible for L to be regular.
 - (xi) _____ The complement of every recursive language is recursive.
 - (xii) _____ The complement of every recursively enumerable language is recursively enumerable.
 - (xiii) _____ Every language which is generated by a general grammar is recursively enumerable.
 - (xiv) _____ The set of all binary numerals for prime numbers is in the class \mathcal{P} .
 - (xv) _____ If L_1 reduces to L_2 in polynomial time, and if L_1 is \mathcal{NP} , and if L_2 is \mathcal{NP} -complete, then L_1 must be \mathcal{NP} -complete.
 - (xvi) _____ The union of any two context-free languages is context-free.
 - (xvii) _____ The class of languages accepted by non-deterministic Turing machines is the same as the class of languages accepted by deterministic Turing machines.
- (xviii) _____ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
- (xix) _____ The intersection of any two context-free languages is context-free.
- (xx) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , then L_1 must be \mathcal{NP} .
- (xxi) _____ The language of all regular expressions over the binary alphabet is a regular language.

- (xxii) _____ Let $e = \sum_{i=0}^{\infty} \frac{1}{i!} = 2.71828...$, the base of the natural logarithm. The problem of whether the n^{th} digit of e, for a given n, is equal to a given digit is decidable.
- (xxiii) _____ Every regular language is in the class \mathcal{NC}
- (xxiv) _____ (Recall that $\langle x \rangle$ is the binary numeral for an integer x.) Let x_1, x_2, \ldots be an arithmetic sequence of integers. The language $\{\langle x_i \rangle\}$ is regular.
- (xxv) _____ (Recall that $\langle x \rangle$ is the binary numeral for an integer x.) Let y_1, y_2, \ldots be a geometric sequence of integers. The language $\{\langle y_i \rangle\}$ is regular.
- (xxvi) _____ The language of all binary strings which are the binary numerals for prime numbers is in the class \mathcal{P} -TIME.
- (xxvii) _____ Every context-free grammar can be parsed by some non-deterministic top-down parser.
- (xxviii) $____$ If anyone ever proves that the integer factorization problem is $\mathcal{P}_____$ all public key/private key encryption systems will be known to be insecure.
- (xxix) _____ If a string w is generated by a context-free grammer G, then w has a unique leftmost derivation if and only if it has a unique rightmost derivation.
- (xxx) _____ The Boolean Circuit Problem is \mathcal{NC} .
- (xxxi) _____ If there is an \mathcal{NC} reduction from L_1 to L_2 , and if L_2 is in Nick's class, then L_1 must be in Nick's class.
- 2. Every language, or problem, falls into exactly one of these categories. For each of the languages, write a letter indicating the correct category. [5 points each]
 - **A** Known to be \mathcal{NC} .
 - **B** Known to be \mathcal{P} -TIME, but not known to be \mathcal{NC} .
 - C Known to be \mathcal{NP} , but not known to be \mathcal{P} -TIME and not known to be \mathcal{NP} -complete.
 - **D** Known to be \mathcal{NP} -complete.
 - ${\bf E}$ Known to be ${\mathcal{P}}\text{-}{\operatorname{SPACE}}$ but not known to be ${\mathcal{NP}}$
 - **F** Known to be EXP-TIME but not nown to be \mathcal{P} -SPACE.
 - G Known to be EXP-SPACE but not nown to be EXP-TIME.
 - **H** Known to be decidable, but not nown to be EXP-SPACE.
 - $K \ \mathcal{RE}$ but not decidable.
 - $\mathbf L$ co- \mathcal{RE} but not decidable.
 - **M** Neither \mathcal{RE} nor co- \mathcal{RE} .

- (a) _____ 3-CNF-SAT (usually known simply as 3-SAT)
- (b) _____ 2-CNF-SAT (usually known simply as 2-SAT)
- (c) _____ Halting problem.
- (d) _____ Boolean circuit problem.
- (e) _____ Regular grammar equivalence.
- (f) _____ Context-free grammar equivalence.
- (g) _____ Regular expression equivalence.
- (h) _____ General sliding block problem.
- (i) _____ Generalized checkers (any size rectangular board).
- (j) _____ DFA equivalence.
- (k) _____ All fractions whose values are less than $\sqrt{6}$.
- (l) _____ $\{a^n b^n c^n d^n : !n \ge 1\}$
- (m) _____ You have a number of containers, each of a given size and shape. You also have a set of objects of various sizes and shapes. Can you fit all the objects into the containers?
- (n) _____ Dynamic programming, where each subproblem works in constant time and has Boolean output.
- 3. [20 points] Find a minimal DFA equivalent to the NFA shown in Figure 1.

Figure 1: NFA for problem 3.

4. [20 points] Give a regular expression for the language accepted by the machine in Figure 2

Figure 2: DFA for problem 4.

- 5. Which class of languages does each of these machine classes accept? [5 points each]
 - (a) Deterministic finite automata.
 - (b) Non-deterministic finite automata.
 - (c) Push-down automata.
 - (d) Turing Machines.
- 6. [20 points] The output of an LALR parser corresponds to the (pick one)
 - (a) preorder
 - (b) postorder
 - (c) reverse preorder
 - (d) reverse postorder

visitation of the internal nodes of the parse tree.

- 7. [20 points] Design a PDA that accepts the Dyck language, whose grammar is given in problem 8
- 8. [20 points] The grammar below is an unambiguous CF grammar for the Dyck language, and is parsed by the LALR parser whose ACTION and GOTO tables are shown here. Write a computation of the parser for the input string *aabb*.

r1

3 s2s4r1

4 r1

- 4	
4	
-	

I will definitely give one of the following four proofs on the final exam.

- 9. [20 points] Prove that a recursively enumerable language is accepted by some machine.
- 10. [20 points] Prove that any language accepted by a machine is recursively enumerable.
- 11. [20 points] Prove that any decidable language is enumerated in canonical order by some machine.
- 12. [20 points] Prove that any language which can be enumerated in canonical order by some machine is decidable.
- 13. [20 points] Prove that the halting problem is undecidable. (This question will definitely be on the final exam.)

I will definitely give one of the following two reductions on the final exam.

- 14. [20 points] Give a polynomial time reduction of 3-SAT to the independent set problem.
- 15. [20 points] Give a polynomial time reduction of the subset sum problem to the partition problem.