University of Nevada, Las Vegas Computer Science 456/656 Fall 2020

Practice for Final Examination December 8, 2021

The entire practice examination is 475 points. The real examination will be shorter.

- 1. True/False/Open See tfI.pdf and tfII.pdf for more T/F questions.
 - (i) **F** Every subset of a regular language is regular.
 - (ii) **T** Every context-free language is \mathcal{NC} .
 - (iii) $\mathbf{F} \mathcal{P}$ -SPACE = EXP-SPACE.
 - (iv) **F** Given a regular expression, an equivalent minimal DFA can always be constructed in polynomial time.
 - (v) $\mathbf{T} L = \{0^n 1^n 0^n 1^n : n \ge 1\}$ is context-sensitive.
 - (vi) F The intersection of two context-free lanuages must be context-free.
 - (vii) T The concatenation of two context-free languages must be context-free.
 - (viii) T The concatenation of two context-sensitive languages is context-sensitive.
 - (ix) **F** The intersection of two co-RE languages is co-RE.
 - (x) **T** Suppose a language L has matching delimeters. That is, its alphabet contains symbols ℓ and r, such that, in each $w \in L$, any instance of ℓ must be uniquely matched with an instance or r to its right. Then it is impossible for L to be regular.
 - (xi) T The complement of every recursive language is recursive.
 - (xii) **F** The complement of every recursively enumerable language is recursively enumerable.
 - (xiii) **T** Every language which is generated by a general grammar is recursively enumerable.
 - (xiv) **O** The set of all binary numerals for prime numbers is in the class \mathcal{P} .
 - (xv) **F** If L_1 reduces to L_2 in polynomial time, and if L_1 is \mathcal{NP} , and if L_2 is \mathcal{NP} -complete, then L_1 must be \mathcal{NP} -complete.
 - (xvi) T The union of any two context-free languages is context-free.
- (xvii) **T** The class of languages accepted by non-deterministic Turing machines is the same as the class of languages accepted by deterministic Turing machines.
- (xviii) \mathbf{F} The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
- (xix) **F** The intersection of any two context-free languages is context-free.
- (xx) **T** If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , then L_1 must be \mathcal{NP} .
- (xxi) **F** The language of all regular expressions over the binary alphabet is a regular language.

- (xxii) **T** Let $e = \sum_{i=0}^{\infty} \frac{1}{i!} = 2.71828...$, the base of the natural logarithm. The problem of whether the n^{th} digit of e, for a given n, is equal to a given digit is decidable.
- (xxiii) **T** Every regular language is in the class \mathcal{NC}
- (xxiv) **T** (Recall that $\langle x \rangle$ is the binary numeral for an integer x.) Let x_1, x_2, \ldots be an arithmetic sequence of integers. The language $\{\langle x_i \rangle\}$ is regular.
- (xxv) **F** (Recall that $\langle x \rangle$ is the binary numeral for an integer x.) Let y_1, y_2, \ldots be a geometric sequence of integers. The language $\{\langle y_i \rangle\}$ is regular.
- (xxvi) **O** The language of all binary strings which are the binary numerals for prime numbers is in the class \mathcal{P} -TIME.
- (xxvii) T Every context-free grammar can be parsed by some non-deterministic top-down parser.
- (xxviii) **F** If anyone ever proves that the integer factorization problem is \mathcal{P} -TIME, all public key/private key encryption systems will be known to be insecure.
- (xxix) **T** If a string w is generated by a context-free grammer G, then w has a unique leftmost derivation if and only if it has a unique rightmost derivation.
- (xxx) **O** The Boolean Circuit Problem is \mathcal{NC} .
- (xxxi) **T** If there is an \mathcal{NC} reduction from L_1 to L_2 , and if L_2 is in Nick's class, then L_1 must be in Nick's class.
- 2. Every language, or problem, falls into exactly one of these categories. For each of the languages, write a letter indicating the correct category. [5 points each]
 - **A** Known to be \mathcal{NC} .
 - **B** Known to be \mathcal{P} -TIME, but not known to be \mathcal{NC} .
 - C Known to be \mathcal{NP} , but not known to be \mathcal{P} -TIME and not known to be \mathcal{NP} -complete.
 - **D** Known to be \mathcal{NP} -complete.
 - **E** Known to be \mathcal{P} -SPACE but not known to be \mathcal{NP}
 - **F** Known to be EXP-TIME but not nown to be \mathcal{P} -SPACE.
 - **G** Known to be EXP-SPACE but not nown to be EXP-TIME.
 - **H** Known to be decidable, but not nown to be EXP-SPACE.
 - $\mathbf{K} \ \mathcal{RE}$ but not decidable.
 - \mathbf{L} co- \mathcal{RE} but not decidable.
 - **M** Neither \mathcal{RE} nor co- \mathcal{RE} .

- (a) **D** 3-CNF-SAT (usually known simply as 3-SAT)
- (b) _____ 2-CNF-SAT (usually known simply as 2-SAT)
- (c) \mathbf{K} Halting problem.
- (d) **B** Boolean circuit problem.
- (e) _____ Regular grammar equivalence.
- (f) L Context-free grammar equivalence.
- (g) E Regular expression equivalence.
- (h) ${\bf E}$ General sliding block problem.
- (i) F Generalized checkers (any size rectangular board).
- (j) A DFA equivalence.
- (k) **A** All fractions whose values are less than $\sqrt{6}$.
- (l) **A** $\{a^n b^n c^n d^n : n \ge 1\}$
- (m) **D** You have a number of containers, each of a given size and shape. You also have a set of objects of various sizes and shapes. Can you fit all the objects into the containers?
- (n) B Dynamic programming, where each subproblem works in constant time and has Boolean output.
- 3. [20 points] Find a minimal DFA equivalent to the NFA shown below.

4. [20 points] Give a regular expression for the language accepted by the machine in Figure 1 $a^*bb^*a(a+(b+c)b^*a)^*$

Figure 1: DFA for problem 4.

- 5. Which class of languages does each of these machine classes accept? [5 points each]
 - (a) Deterministic finite automata.

Regular languages

(b) Non-deterministic finite automata.

Regular languages

(c) Push-down automata.

Context-free languages

(d) Turing Machines.

Recursively enumerable languages

- 6. [20 points] The output of an LALR parser corresponds to the (pick one)
 - (a) preorder
 - (b) postorder
 - (c) reverse preorder
 - (d) reverse postorder

postorder visitation of the internal nodes of the parse tree.

7. [20 points] Design a PDA that accepts the Dyck language, whose grammar is given in problem 8.

8. [20 points]

The grammar below is an unambiguous CF grammar for the Dyck language, and is parsed by the LALR parser whose ACTION and GOTO tables are shown here. Write a computation of the parser for the input string aabb.

1.
$$S \to S_{1,3} a_2 S_3 b_4$$

2.
$$S \to \lambda$$

	a	b	\$	S
0	r2		r2	1
1	<i>s</i> 2		halt	
2	r2	r2		3
3	<i>s</i> 2	s4		
4	r1	r1	r1	

\$0	aabb\$	
$\$_0 S_1$	aabb\$	2
$\$_0 S_1 a_2$	abb\$	2
$\$_0 S_1 a_2 S_3$	abb\$	22
$\$_0 S_1 a_2 S_3 a_2$	bb\$	22
$\$_0 S_1 a_2 S_3 a_2 S_3$	bb\$	222
$\$_0 S_1 a_2 S_3 a_2 S_3 b_4$	b\$	222
$\$_0 S_1 a_2 S_3$	<i>b</i> \$	2221
$\$_0 S_1 a_2 S_3 b_4$	\$	2221
$\$_0 S_1$	\$	22211
TTATO		

HALT

I will definitely give one of the following four proofs on the final exam.

9. [20 points] Prove that a recursively enumerable language is accepted by some machine.

Let w_1, w_2, \ldots be an enumeration of L computed by some machine. The following program accepts L.

Read w.

For all i from 1 to ∞

 $if(w_i = w)$ accept and halt

10. [20 points] Prove that any language accepted by a machine is recursively enumerable.

The following program enumrates L. Let w_1, w_2, \ldots be the enumeration of Σ^* in canonical order. Let M be a machine which accepts L. The following program enumerates L.

For integers t from 1 to ∞

For integers i from 1 to t

If M accepts w_i is at most t steps

Write w_i

11. [20 points] Prove that any decidable language is enumerated in canonical order by some machine.

Let w_1, w_2, \ldots be the enumeration of Σ^* in canonical order. Let M be a machine which decides L. The following program enumerates L in canonical order.

For integers i from 1 to ∞

If M accepts w_i Write w_i

12. [20 points] Prove that any language which can be enumerated in canonical order by some machine is decidable.

There are two cases.

Case 1. L is finite. Let $\{w_1, w_2, \dots w_n\}$ be the members of L The following program decides L.

Read w.

For all i from 1 to n

 $if(w_i = w)$ accept and halt

Reject.

Case 2. L is infinite. Let w_1, w_2, \ldots be a canonical order enumeration of L computed by some machine. The following program decides L.

Read w.

For all i from 1 to ∞

 $if(w_i = w)$ accept and halt

else if $(w_i > w)$ in the canonical order of Σ^* reject and halt

13. [20 points] Prove that the halting problem is undecidable. This question will definitely be on the final exam.

I will accept any correct proof, provided it's written correctly. Here is my proof, which is by contradiction.

Assume the halting problem is decidable, that is $HALT = \{\langle M \rangle w : M \text{ accepts } w\}$ is decided by some machine M_{HALT} .

Let DIAG = $\{\langle M \rangle : \langle M \rangle \langle M \rangle \notin \text{HALT}\}$ Let M_{DIAG} be a machine equivalent to the following program:

Read w

If w is the encoding of a machine and $ww \notin HALT$ accept

Else reject

 $M_{\rm DIAG}$ decides DIAG.

Statement 1: $\langle M_{\text{DIAG}} \rangle \in \text{DIAG}$ if and only if M_{DIAG} does not accept $\langle M_{\text{DIAG}} \rangle$, by the definition of DIAG.

Statement 2: $\langle M_{\text{DIAG}} \rangle \in \text{DIAG}$ if and only if M_{DIAG} accepts $\langle M \rangle$, by the definition of M_{DIAG}

Contradiction. Therefore HALT is not decidable.

I will definitely give one of the following two reductions on the final exam.

14. [20 points] Give a polynomial time reduction of 3-SAT to the independent set problem.

Let E be a Boolean expression in 3-CNF form. That is, $E = C_1 * C_2 * \cdots * C_k$, where for each $1 \le i \le k$, $C_i = t_{i,1} + t_{i,2} + t_{i,3}$ where each term $t_{i,j}$ is either a Boolean variable or the negation of a Boolean variable.

Let G = (V, E) be a graph where V has 3k vertices, named $v_{i,j}$ for all $1 \le i \le k$ and $j \in 1, 2, 3, E$ consists of pairs $\{v_{i,1}, v_{i,2}\}$, $\{v_{i,1}, v_{i,3}\}$, $\{v_{i,2}, v_{i,3}\}$, for all i, and $\{v_{i,j}, v_{i',j'}\}$ for all i, j, i', j' such that $t_{i,j} + t_{i',j'}$ is a contradiction. Then E has an independent set of order k if and only if E is satisfiable.

15. [20 points] Give a polynomial time reduction of the subset sum problem to the partition problem.

 $\mathcal{I} = (K, x_1, x_2, \dots x_n)$, an instance of the subset sum problem and define

$$R(\mathcal{I}) = (x_1, x_2, \dots x_n, K+1, S-K+1)$$

an instance of the partition problem, where $S = x_1 + x_2 + \cdots + x_n$. The sum of the sequence $R(\mathcal{I})$ is 2S + 2, and $R(\mathcal{I})$ has a subsequence which totals S + 1 if and only if there is a subsequence of $x_1, \ldots x_n$ whose total is K, and thus R is a reduction of the subset sum problem to the partition problem.