CSC 456/656 Fall 2021 Answers to Examination November 17, 2021

The entire test is 270 points.

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (i) **F** Every subset of a regular language is regular.
 - (ii) **F** The intersection of any two context-free languages is context-free.
 - (iii) T Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
 - (iv) **F** Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
 - (v) **T** The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is \mathcal{NC} .
 - (vi) **O** There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
 - (vii) **F** Every problem that can be mathematically defined has an algorithmic solution.
 - (viii) **T** Every context-free language is in \mathcal{NC} .
 - (ix) **T** Multiplication of binary numerals is in \mathcal{NC} .
 - (x) **F** The problem of whether two given context-free grammars generate the same language is decidable.
 - (xi) **T** For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable.
 - (xii) **F** For any two languages L_1 and L_2 , if L_2 is undecidable and there is a polynomial time reduction of L_1 to L_2 , then L_1 must be undecidable.
 - (xiii) **T** For any two \mathcal{NP} languages L_1 and L_2 , if L_1 is \mathcal{NP} -complete and there is a polynomial time reduction of L_1 to L_2 , then L_2 must be \mathcal{NP} -complete.
 - (xiv) **O** or **F** For any two \mathcal{NP} languages L_1 and L_2 , if L_2 is \mathcal{NP} -complete and there is a recursive reduction of L_1 to L_2 , then L_1 must be \mathcal{NP} -complete.
 - (xv) **T** If L_1 is \mathcal{NP} and L_2 is \mathcal{NP} -complete, there is a polynomial time reduction of L_1 to L_2 .
 - (xvi) **O** If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} .
 - (xvii) **T** If L is in \mathcal{RE} and also co- \mathcal{RE} , then L must be decidable.
 - (xviii) \mathbf{T} The computer language C++ has Turing power.
 - (xix) \mathbf{T} If an abstract Pascal machine can perform a computation in polynomial time, there must be some Turing machine that can perform the same computation in polynomial time.

- 2. (5 points each) For each language or problem listed below, fill in the blank with a letter from A to G, where each letter has the following meaning:
 - **A:** Known to be \mathcal{NC} .
 - **B:** Known to be \mathcal{P} -time but not known to be \mathcal{NC} .
 - C: Known to be \mathcal{NP} , but not known to be \mathcal{P} -TIME, and not known to be \mathcal{NP} -complete.
 - **D:** Known to be \mathcal{NP} -complete.
 - **E:** Known to be \mathcal{P} -space, but not known to be \mathcal{NP} .
 - **F:** Known to be decidable, but not known to be \mathcal{P} -space
 - ${\bf G:} \ {\rm Undecidable.}$
 - (i) A All Boolean expressions using parentheses, and, or, and not.
 - (ii) **A** Addition of binary numerals.
 - (iii) **B** Dynamic Programming.
 - (iv) **D** The Independent Set problem.
 - (v) **A** The language $\{a^n b^n c^n : n > 0\}$.
 - (vi) C Factoring integers expressed as decimal numerals.
 - (vii) **D** The subset sum problem.
 - (viii) **E** Rush Hour (the sliding block puzzle).
 - (ix) **F** All positions in generalized checkers where Black can force a win.
- 3. (5 points each) For each language or problem listed below, fill in the blank with a letter from H to L, where each letter has the following meaning:

H: Decidable.

I: \mathcal{RE} but not decidable.

- K: co- \mathcal{RE} but not decidable.
- L: Neither \mathcal{RE} nor co- \mathcal{RE} .
- (i) **I** The halting problem.
- (ii) **K** The diagonal language.
- (iii) **I** The complement of the diagonal language.
- (iv) **H** 3-SAT
- (v) **K** Equivalence of context-free grammars.
- (vi) **H** Rush Hour (the sliding block puzzle).

4. [20 points] Give a \mathcal{P} -TIME reduction of the subset sum problem to the partition problem. Let $(K, x_1, x_2, \ldots x_n)$ be an instance of the subset problem. That instance reduces to $(K + 1, S - K + 1, x_1, x_2, \ldots x_n)$, an instance of the partition problem, where $S = x_1 + \cdots + x_n$.

5. [20 points]

What follows is the LALR praser for the following context-free grammar, where E is the start symbol and the alphabet of terminals is $\{a, +, -, (,)\}$.

- 1. $E \rightarrow E_{-2} E_3$ 2. $E \rightarrow E_{*4} E_5$ 3. $E \rightarrow (_6E_7)_8$
- 4. $E \rightarrow a_9$

	a	-	*	()	\$	E
0	<i>s</i> 9			<i>s</i> 6			1
1		<i>s</i> 2	s4			halt	
2	<i>s</i> 9			<i>s</i> 6			3
3		r1	s4		r1	r1	
4	s9			<i>s</i> 6			5
5		r2	r2		r2	r2	
6	s9			s6			7
7		s2	s4		s8		
8		r3	r3		r3	r3	
9		r4	r4		r4	r4	

Show the steps of the parser with the input file (a - a) * a.

\$0	(a-a) * a\$		
\$0((a-a)*a	s6	
$\$_0(_6a_9$	-a) * a\$	s9	
$\$_0(_6E_7$	-a) * a\$	r4	4
$_{0}(_{6}E_{7}{2})$	a) * a\$	s2	4
$(_6E_72a_9)$) * a\$	s9	4
$\$_0(_6E_72E_3)$) * a\$	r4	44
$_{0}(_{6}E_{7})$) * a\$	r1	441
$(_{6}E_{7})_{8}$	*a\$	s8	441
$$_0E_1$	*a\$	r3	4413
$_0E_1*_4$	a\$	s4	4413
$a_0 E_1 *_4 a_9$	\$	s9	4413
$$_0E_1 *_4 E_5$	\$	r4	44134
$\$_0 E_1$	\$	r2	441342
HALT			441342

The output of the LALR parser is 441342, the reverse rightmost derivation of the input string.

6. [20 points] State the pumping lemma for context-free languages.

If L is a context-free language, there exists an integer p such that, for any $w \in L$, if $|w| \ge p$, there exist strings u, v, s, y, z such that:

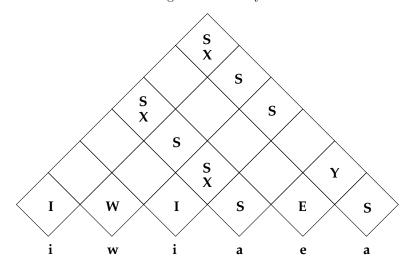
- 1. w = uvxyz,
- 2. $|vxy| \leq p$,
- 3. v and y are not both the empty string,
- 4. For any integer $i \ge 0$, $uv^i xy^i z \in L$.
- 7. [20 points] Suppose there is a machine that enumerates a language L in canonical order. Prove that L is decidable.

Case 1: L is finite. Every finite language is decidable.

Case 2: L is infinite. Let w_1, w_2, \ldots be an enumeration of L in canonical order. The following program decides L.

Read w. For i from 1 to ∞ if $(w_i = w)$ HALT accept else if $(w_i > w)$ (in the canonical order) HALT reject

An alternative is to run the loop for *i* from 1 to 2^{n+1} , where n = |w| This is correct if *L* is a language of binary strings, but not if the alphabet is larger. I gave full credit.


8. [20 points]

Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below. $S \rightarrow IS$ $S \rightarrow XY$

 $\begin{array}{l} S \rightarrow WS \\ S \rightarrow a \\ X \rightarrow IS \\ Y \rightarrow ES \\ W \rightarrow w \\ I \rightarrow i \end{array}$

 $E \to e$

Use the CYK algorithm to prove that the string *iwiaea* is a member of *L*. Use the figure below for your work.

