CSC 456/656 Fall 2021 Practice for the Third Examination November 17, 2021

The entire practice test is 590 points. The real test will be shorter.

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (i) _____ Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
 - (ii) _____ The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
 - (iii) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (iv) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
 - (v) _____ The intersection of any three regular languages is regular.
 - (vi) _____ The intersection of any regular language with any context-free language is context-free.
 - (vii) _____ The intersection of any two context-free languages is context-free.
 - (viii) _____ If L is a context-free language over an alphabet with just one symbol, then L is regular.
 - (ix) _____ There is a deterministic parser for any context-free grammar.
 - (x) _____ The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
 - (xi) _____ Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
 - (xii) _____ The problem of whether a given string is generated by a given context-free grammar is decidable.
 - (xiii) _____ If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
 - (xiv) _____ Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
 - (xv) _____ The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is recursive.
 - (xvi) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is in the class \mathcal{P} -TIME.
 - (xvii) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
 - (xviii) <u>Every</u> undecidable problem is \mathcal{NP} -complete.
 - (xix) _____ Every problem that can be mathematically defined has an algorithmic solution.

- (xx) _____ The intersection of two undecidable languages is always undecidable.
- (xxi) _____ Every \mathcal{NP} language is decidable.
- (xxii) _____ The clique problem is \mathcal{NP} -complete.
- (xxiii) _____ The traveling salesman problem is \mathcal{NP} -hard.
- (xxiv) _____ The intersection of two \mathcal{NP} languages must be \mathcal{NP} .
- (xxv) If L_1 and L_2 are \mathcal{NP} -complete languages and $L_1 \cap L_2$ is not empty, then $L_1 \cap L_2$ must be \mathcal{NP} -complete.
- (xxvi) _____ There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any graph G.
- (xxvii) _____ There exists a \mathcal{P} -TIME algorithm which finds a maximum independent set in any acyclic graph G.
- (xxviii) $\longrightarrow \mathcal{NC} = \mathcal{P}.$
- (xxix) $\square \mathcal{P} = \mathcal{NP}.$
- $(xxx) \longrightarrow \mathcal{NP} = \mathcal{P}$ -SPACE
- (xxxi) _____ \mathcal{P} -space = EXP-time
- (xxxii) _____ EXP-TIME = EXP-SPACE
- (xxxiii) $___$ EXP-TIME = \mathcal{P} -TIME.
- (xxxiv) _____ EXP-SPACE = \mathcal{P} -SPACE.
- (xxxv) _____ The traveling salesman problem (TSP) is \mathcal{NP} -complete.
- (xxxvi) _____ The knapsack problem is \mathcal{NP} -complete.
- (xxxvii) _____ The language consisting of all satisfiable Boolean expressions is \mathcal{NP} -complete.
- (xxxviii) _____ The Boolean Circuit Problem is in \mathcal{P} .
- (xxxix) _____ The Boolean Circuit Problem is in \mathcal{NC} .
 - (xl) _____ If L_1 and L_2 are undecidable languages, there must be a recursive reduction of L_1 to L_2 .
 - (xli) _____ The language consisting of all strings over $\{a, b\}$ which have more a's than b's is LR(1).
 - (xlii) $_$ 2-SAT is \mathcal{P} -TIME.
 - (xliii) $_$ 3-SAT is \mathcal{P} -TIME.
 - (xliv) $_$ Primality is \mathcal{P} -TIME.
 - (xlv) _____ There is a \mathcal{P} -TIME reduction of the halting problem to 3-SAT.

- (xlvi) _____ Every context-free language is in \mathcal{P} .
- (xlvii) _____ Every context-free language is in \mathcal{NC} .
- (xlviii) _____ Addition of binary numerals is in \mathcal{NC} .
- (xlix) _____ Every context-sensitive language is in \mathcal{P} .
 - (l) _____ Every language generated by a general grammar is recursive.
 - (li) _____ The problem of whether two given context-free grammars generate the same language is decidable.
 - (lii) _____ If G is a context-free grammar, the question of whether $L(G) = \Sigma^*$ is decidable, where Σ is the terminal alphabet of G.
- (liii) _____ The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A *fraction* is a string. "314/100" is in the language, but "22/7" is not.)
- (liv) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary ("caveman") numeral.
- (lv) _____ For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable.
- (lvi) _____ For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable.
- (lvii) _____ If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$.
- (lviii) _____ If L is any \mathcal{NP} language, there must be a \mathcal{P} -TIME reduction of L to the partition problem.
- (lix) _____ Every bounded function is recursive.
- (lx) _____ If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} .
- (lxi) _____ Recall that if \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L} . Let \mathcal{RE} be the class of all recursively enumerable languages. If L is in \mathcal{RE} and also L is in co- \mathcal{RE} , then L must be decidable.
- (lxii) _____ Every language is enumerable.
- (lxiii) _____ If a language L is undecidable, then there can be no machine that enumerates L.
- (lxiv) _____ There exists a mathematical proposition that can be neither proved nor disproved.
- (lxv) _____ There is a non-recursive function which grows faster than any recursive function.
- (lxvi) _____ There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).

- (lxvii) _____ For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
- (lxviii) **_____ Rush Hour**, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is \mathcal{NP} -complete.
- (lxix) _____ There is a polynomial time algorithm which determines whether any two regular expressions are equivalent.
- (lxx) _____ If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.
- (lxxi) _____ Every subset of a regular language is regular.
- (lxxii) $\ldots \mathcal{P} = \mathcal{NP}$
- (lxxiii) $\ldots \mathcal{P} = \mathcal{NC}$
- (lxxiv) _____ Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
- (lxxv) _____ Every subset of any enumerable set is enumerable.
- (lxxvi) _____ If L is a context-free language which contains the empty string, then $L \setminus \{\lambda\}$ must be context-free.
- (lxxvii) $____$ If L is any language, there is a reduction of L to the halting problem. (Warning: this is a trick question. Give it some serious thought.)
- (lxxviii) _____ The computer language C++ has Turing power.
- (lxxix) ------ Let Σ be the binary alphabet. Every $w \in \Sigma^*$ which starts with 1 is a binary numeral for a positive integer. Let $Sq : \Sigma^* \to \Sigma^*$ be a function which maps the binary numeral for any integer n to the binary numeral for n^2 . Then Sq is an \mathcal{NC} function.
- (lxxx) _____ If L is any \mathcal{P} -TIME language, there is an \mathcal{NC} reduction of the Boolean circuit problem to L.
- (lxxxi) _____ If an abstract Pascal machine can perform a computation in polynomial time, there must be some Turing machine that can perform the same computation in polynomial time.
- (lxxxii) _____ The binary integer factorization problem is co-NP.
- (lxxiii) _____ Let L be any \mathcal{RE} language which is not decidable, and let M_L be a machine which accepts L.
 - (a) If there are no strings of L of length n, let T(n) = 0.

(b) Otherwise, let T(n) be the largest number of steps it takes M_L to accept any string in L of length n.

Then T is a recursive function.

(lxxxiv) _____ There is a polynomial time reduction of the subset sum problem to the binary factorization problem.

- (lxxxv) _____ The language of all palindromes over $\{a, b\}$ is an LR language.
- (lxxxvi) _____ The Simplex algorithm for linear programming is polynomial time.
- (lxxxvii) ______ Remember what a *fraction* is? It's a string consisting of a decimal numberal, followed by a slash, followed by another decimal numeral whose value is not zero. For example, the string "14/37" is a fraction. Each fraction has a value, which is a number. For example, "2/4" and "1/2" are different fractions, but has the same value. For any real number x, the set of fractions whose values are less than x is \mathcal{RE} .
- (lxxviii) _____ The union of any two deterministic context-free languages must be a DCFL.
- (lxxxix) _____ The intersection of any two deterministic context-free languages must be a DCFL.
 - (xc) _____ The complement of any DCFL must be a DCFL.
 - (xci) _____ Every DCFL is generated by an LR grammar.
 - (xcii) $___$ The membership problem for a DCFL is in the class \mathcal{P} -TIME.
 - (xciii) _____ If $h: \Sigma_1 \to \Sigma_2^*$ is a function, $L_1 \in \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, $h(L_1) = L_2$ and L_1 is regular, then L_2 must be regular.
 - (xciv) _____ If $h: \Sigma_1 \to \Sigma_2^*$ is a function, $L_1 \in \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, $h(L_1) = L_2$ and L_2 is regular, then L_1 must be regular.
 - (xcv) _____ If $h: \Sigma_1 \to \Sigma_2^*$ is a function, $L_1 \in \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, $L_1 = h^{-1}(L_2)$ and L_2 is regular, then L_1 must be regular.
- 2. (10 points each) For each language or problem listed below, fill in the blank with a letter from A to G, where each letter has the following meaning:
 - **A:** Known to be \mathcal{NC} .
 - **B:** Known to be \mathcal{P} -TIME but not known to be \mathcal{NC} .
 - C: Known to be \mathcal{NP} , but not known to be \mathcal{P} -TIME, and not known to be \mathcal{NP} -complete.
 - **D**: Known to be \mathcal{NP} -complete.
 - **E:** Known to be \mathcal{P} -SPACE, but not known to be \mathcal{NP} .
 - **F**: Known to be decidable, but not known to be \mathcal{P} -space
 - ${\bf G:} \ {\rm Undecidable}.$
 - (i) _____ The Dyck language.
 - (ii) _____ The Boolean Circuit problem.
 - (iii) <u>Equivalence of NFAs.</u>
 - (iv) _____ Block Sorting.
 - (v) _____ The language $\{a^n b^n c^n : n > 0\}.$
 - (vi) _____ Factoring integers expressed as decimal numerals.

- (vii) _____ Multiplication of binary numerals.
- (viii) _____ All checkers positions where Black can force a win.
- 3.)10 points each) For each language or problem listed below, fill in the blank with a letter from H to L, where each letter has the following meaning:
 H: Decidable.
 I: RE but not decidable.
 K: co-RE but not decidable.
 L: Neither RE nor co-RE.
 - (i) _____ The halting problem.
 - (ii) _____ The diagonal language.
 - (iii) _____ The complement of the diagonal language.
 - (iv) _____ The subset sum problem.
 - (v) _____ Equivalence of context-free grammars.
 - (vi) _____ Rush Hour (the sliding block puzzle).
- 4. [20 points] Design an LALR praser for the following context-free grammar where S is the start symbol and the alphabet of terminals is $\{a, b\}$. I have filled in a few entries.

		a	b	\$	S
1. $S \to a_2 S_3 b_4 S_5$	0	s2			
2. $S \rightarrow \lambda$	1			HALT	
	2		r2		3
	3		s4		
	4				
	5			r1	

5. [20 points] Give a \mathcal{P} -TIME reduction of the subset sum problem to the partition problem.

6. [20 points] State the pumping lemma for context-free languages.

7. [20 points] Suppose there is a machine that enumerates a language in canonical order. Prove that L is decidable.

8. [20 points]

Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below. $S \rightarrow IS$ $S \rightarrow XY$ $S \rightarrow WS$ $S \rightarrow a$ $X \rightarrow IS$ $Y \rightarrow ES$ $W \rightarrow w$

 $I \rightarrow i$

 $E \rightarrow e$

Use the CYK algorithm to prove that the string *iwiaea* is a member of *L*. Use the figure below for your work.

