True/False Questions, Part I

True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively. (i) Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L. (ii) _____ The language $\{a^nb^n \mid n \geq 0\}$ is context-free. (iii) _____ The language $\{a^nb^nc^n \mid n \geq 0\}$ is context-free. (iv) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free. (v) _____ The intersection of any three regular languages is regular. (vi) _____ The intersection of any regular language with any context-free language is context-free. (vii) _____ The intersection of any two context-free languages is context-free. (viii) ______ If L is a context-free language over an alphabet with just one symbol, then L is regular. (ix) _____ There is a deterministic parser for any context-free grammar. (x) _____ The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language. (xi) _____ Every language accepted by a non-deterministic machine is accepted by some deterministic machine. (xii) _____ The problem of whether a given string is generated by a given context-free grammar is (xiii) _____ If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable. (xiv) _____ Every language generated by an unambiguous context-free grammar is accepted by some DPDA. (xv) _____ The language $\{a^nb^nc^nd^n \mid n \geq 0\}$ is recursive. (xvi) _____ The language $\{a^nb^nc^n \mid n \geq 0\}$ is in the class \mathcal{P} -TIME. (xvii) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral. (xviii) _____ Every undecidable problem is \mathcal{NP} -complete. (xix) _____ Every problem that can be mathematically defined has an algorithmic solution. (xx) _____ The intersection of two undecidable languages is always undecidable. (xxi) _____ Every \mathcal{NP} language is decidable.

- (xxii) _____ The intersection of two \mathcal{NP} languages must be \mathcal{NP} .
- (xxiii) _____ If L_1 and L_2 are \mathcal{NP} -complete languages and $L_1 \cap L_2$ is not empty, then $L_1 \cap L_2$ must be \mathcal{NP} -complete.
- (xxiv) $\mathcal{NC} = \mathcal{P}$.
- (xxv) $\mathcal{P} = \mathcal{NP}$.
- (xxvi) $\mathcal{NP} = \mathcal{P}$ -space
- (xxvii) \mathcal{P} -SPACE = EXP-TIME
- (xxviii) ____ EXP-TIME = EXP-SPACE
- (xxix) $\underline{\hspace{1cm}}$ EXP-TIME = \mathcal{P} -TIME.
- (xxx) ____ EXP-space = \mathcal{P} -space.
- (xxxi) _____ The traveling salesman problem (TSP) is \mathcal{NP} -complete.
- (xxxii) _____ The knapsack problem is \mathcal{NP} -complete.
- (xxxiii) _____ The language consisting of all satisfiable Boolean expressions is \mathcal{NP} -complete.
- (xxxiv) _____ The Boolean Circuit Problem is in \mathcal{P} .
- (xxxv) _____ The Boolean Circuit Problem is in \mathcal{NC} .
- (xxxvi) _____ If L_1 and L_2 are undecidable languages, there must be a recursive reduction of L_1 to L_2 .
- (xxxvii) _____ The language consisting of all strings over $\{a,b\}$ which have more a's than b's is LR(1).
- (xxxviii) $_$ 2-SAT is \mathcal{P} -TIME.
- (xxxix) \longrightarrow 3-SAT is \mathcal{P} -TIME.
 - (xl) _____ Primality is \mathcal{P} -TIME.
 - (xli) _____ There is a \mathcal{P} -TIME reduction of the halting problem to 3-SAT.
 - (xlii) _____ Every context-free language is in \mathcal{P} .
 - (xliii) _____ Every context-free language is in \mathcal{NC} .
 - (xliv) _____ Addition of binary numerals is in \mathcal{NC} .
 - (xlv) _____ Every context-sensitive language is in \mathcal{P} .
 - (xlvi) _____ Every language generated by a general grammar is recursive.
 - (xlvii) _____ The problem of whether two given context-free grammars generate the same language is decidable.

(xlviii) ______ The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A fraction is a string. "314/100" is in the language, but "22/7" is not.) (xlix) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary ("caveman") numeral. (1) For any two languages L_1 and L_2 , if L_1 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_2 must be undecidable. (li) For any two languages L_1 and L_2 , if L_2 is undecidable and there is a recursive reduction of L_1 to L_2 , then L_1 must be undecidable. (lii) _____ If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$. (liii) ______ If L is any \mathcal{NP} language, there must be a \mathcal{P} -TIME reduction of L to the partition problem. (liv) _____ Every bounded function is recursive. (lv) _____ If L is \mathcal{NP} and also co- \mathcal{NP} , then L must be \mathcal{P} . (lvi) Recall that if \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L} . Let \mathcal{RE} be the class of all recursively enumerable languages. If L is in \mathcal{RE} and also L is in co- \mathcal{RE} , then L must be decidable. (lvii) _____ Every language is enumerable. (lviii) _____ If a language L is undecidable, then there can be no machine that enumerates L. (lix) _____ There exists a mathematical proposition that can be neither proved nor disproved. (lx) _____ There is a non-recursive function which grows faster than any recursive function. (lxi) _____ There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter). (lxii) _____ For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x. (lxiii) _____ Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is \mathcal{NP} -complete. (lxiv) _____ There is a polynomial time algorithm which determines whether any two regular expressions are equivalent. (lxv) _____ If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.