We say that a function is in the class $\mathcal{N C}$ if the function can be computed in polylogarithmic time by polynomially many processors.

At the start of the computation of such a function, each symbol of the input string could be read by a different processor, and at the end, each symbol of the output string could be written by a different processor.

Answers to True/False Questions, Part II

A deterministic context free language (DCFL) is a language accepted by a deterministic push-down automaton (DPDA).

1. True or False. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and $\mathcal{N} \mathcal{P}$ denote \mathcal{P}-TIME and $\mathcal{N} \mathcal{P}$-TIME, respectively.
(lxvi) F Every subset of a regular language is regular.
(lxvii) \mathbf{F} Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a 's than b 's and more b 's than c 's. There is some PDA that accepts L.
(lxviii) T Every subset of any enumerable set is enumerable.
(lxix) \mathbf{T} If L is a context-free language which contains the empty string, then $L \backslash\{\lambda\}$ must be context-free.
(lxx) \mathbf{T} If L is any language, there is a reduction of L to the halting problem. (Warning: this is a trick question. Give it some serious thought.)
(lxxi) \mathbf{T} The computer language $\mathrm{C}++$ has Turing power.
(lxxii) T Let Σ be the binary alphabet. Every $w \in \Sigma^{*}$ which starts with 1 is a binary numeral for a positive integer. Let $S q: \Sigma^{*} \rightarrow \Sigma *$ be a function which maps the binary numeral for any integer n to the binary numeral for n^{2}. Then $S q$ is an $\mathcal{N C}$ function.
(lxxiii) \mathbf{T} If L is any \mathcal{P}-TIME language, there is an $\mathcal{N C}$ reduction of the Boolean circuit problem to L.
(lxxiv) T If an abstract Pascal machine can perform a computation in polynomial time, there must be some Turing machine that can perform the same computation in polynomial time.
(lxxv) \mathbf{T} The binary integer factorization problem is co- $\mathcal{N} \mathcal{P}$.
(lxxvi) \mathbf{F} Let L be any $\mathcal{R E}$ language which is not decidable, and let M_{L} be a machine which accepts L.
(a) If there are no strings of L of length n, let $T(n)=0$.
(b) Otherwise, let $T(n)$ be the largest number of steps it takes M_{L} to accept any string in L of length n.
Then T is a recursive function.
(lxxvii) \mathbf{O} There is a polynomial time reduction of the subset sum problem to the binary factorization problem.
(lxxviii) \mathbf{F} The language of all palindromes over $\{a, b\}$ is an LR language.
(lxxix) F The Simplex algorithm for linear programming is polynomial time.
(lxxx) F Remember what a fraction is? It's a string consisting of a decimal numberal, followed by a slash, followed by another decimal numeral whose value is not zero. For example, the string " $14 / 37$ " is a fraction. Each fraction has a value, which is a number. For example, " $2 / 4$ " and " $1 / 2$ " are different fractions, but has the same value. For any real number x, the set of fractions whose values are less than x is $\mathcal{R E}$.
(lxxxi) F The union of any two deterministic context-free languages must be a DCFL.
(lxxxii) F The intersection of any two deterministic context-free languages must be a DCFL.
(lxxxiii) T The complement of any DCFL must be a DCFL.
(lxxxiv) T Every DCFL is generated by an LR grammar.
(lxxxy) \mathbf{T} The membership problem for a DCFL is in the class \mathcal{P}-TIME.
(lxxxvi) \mathbf{T} If $h: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$ is a function, $L_{1} \in \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}, h\left(L_{1}\right)=L_{2}$ and L_{1} is regular, then L_{2} must be regular.
(lxxxvii) F If $h: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$ is a function, $L_{1} \in \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}, h\left(L_{1}\right)=L_{2}$ and L_{2} is regular, then L_{1} must be regular.
(lxxxviii) T If $h: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$ is a function, $L_{1} \in \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}, L_{1}=h^{-1}\left(L_{2}\right)$ and L_{2} is regular, then L_{1} must be regular.
