## Answers to True/False Questions, Part I

## If you find an error, let me know immediately!

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, P and NP denote P-TIME and NP-TIME, respectively.
  - (i) **F** Let L be the language over  $\{a, b, c\}$  consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
  - (ii) **T** The language  $\{a^nb^n \mid n \geq 0\}$  is context-free.
  - (iii) **F** The language  $\{a^nb^nc^n \mid n \geq 0\}$  is context-free.
  - (iv) **T** The language  $\{a^ib^jc^k \mid j=i+k\}$  is context-free.
  - (v) T The intersection of any three regular languages is regular.
  - (vi) T The intersection of any regular language with any context-free language is context-free.
  - (vii) F The intersection of any two context-free languages is context-free.
  - (viii) T If L is a context-free language over an alphabet with just one symbol, then L is regular.
  - (ix) **T** There is a deterministic parser for any context-free grammar. (But not necessarily an LALR parser.)
  - (x) **T** The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
  - (xi) **T** Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
  - (xii) **T** The problem of whether a given string is generated by a given context-free grammar is decidable.
  - (xiii) **T** If G is a context-free grammar, the question of whether  $L(G) = \emptyset$  is decidable.
  - (xiv) F Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
  - (xv) **T** The language  $\{a^nb^nc^nd^n \mid n \geq 0\}$  is recursive.
  - (xvi) T The language  $\{a^nb^nc^n \mid n \geq 0\}$  is in the class  $\mathcal{P}$ -TIME.
  - (xvii) O There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
  - (xviii) **F** Every undecidable problem is  $\mathcal{NP}$ -complete.
  - (xix) **F** Every problem that can be mathematically defined has an algorithmic solution.
  - (xx) **F** The intersection of two undecidable languages is always undecidable.
  - (xxi) **T** Every  $\mathcal{NP}$  language is decidable.

- (xxii) T The intersection of two  $\mathcal{NP}$  languages must be  $\mathcal{NP}$ .
- (xxiii) **F** If  $L_1$  and  $L_2$  are  $\mathcal{NP}$ -complete languages and  $L_1 \cap L_2$  is not empty, then  $L_1 \cap L_2$  must be  $\mathcal{NP}$ -complete.
- (xxiv)  $\mathbf{O} \mathcal{NC} = \mathcal{P}$ .
- (xxv)  $\mathbf{O} \mathcal{P} = \mathcal{N} \mathcal{P}$ .
- (xxvi)  $\mathbf{O} \mathcal{NP} = \mathcal{P}\text{-space}$
- (xxvii)  $\mathbf{O} \mathcal{P}$ -space = EXP-time
- (xxviii)  $\mathbf{O}$  EXP-TIME = EXP-SPACE
- (xxix)  $\mathbf{F}$  EXP-TIME =  $\mathcal{P}$ -TIME.
- (xxx)  $\mathbf{F}$  EXP-space =  $\mathcal{P}$ -space.
- (xxxi) **T** The traveling salesman problem (TSP) is  $\mathcal{NP}$ -complete.
- (xxxii) **T** The knapsack problem is  $\mathcal{NP}$ -complete.
- (xxxiii) **T** The language consisting of all satisfiable Boolean expressions is  $\mathcal{NP}$ -complete.
- (xxxiv) **T** The Boolean Circuit Problem is in  $\mathcal{P}$ .
- (xxxv) **O** The Boolean Circuit Problem is in  $\mathcal{NC}$ .
- (xxxvi) **F** If  $L_1$  and  $L_2$  are undecidable languages, there must be a recursive reduction of  $L_1$  to  $L_2$ .
- (xxxvii) T The language consisting of all strings over  $\{a, b\}$  which have more a's than b's is LR(1).
- (xxxviii)  $\mathbf{T}$  2-SAT is  $\mathcal{P}$ -TIME.
- (xxxix) **O** 3-SAT is  $\mathcal{P}$ -TIME.
  - (xl)  $\mathbf{T}$  Primality is  $\mathcal{P}$ -TIME.
  - (xli) T There is a  $\mathcal{P}$ -TIME reduction of the halting problem to 3-SAT.
  - (xlii) **T** Every context-free language is in  $\mathcal{P}$ .
  - (xliii) **O** Every context-free language is in  $\mathcal{NC}$ .
  - (xliv) **T** Addition of binary numerals is in  $\mathcal{NC}$ .
  - (xlv) **O** Every context-sensitive language is in  $\mathcal{P}$ .
  - (xlvi) **F** Every language generated by a general grammar is recursive.
- (xlvii) **F** The problem of whether two given context-free grammars generate the same language is decidable.
- (xlviii) **T** The language of all fractions (using base 10 numeration) whose values are less than  $\pi$  is decidable. (A *fraction* is a string. "314/100" is in the language, but "22/7" is not.)

- (xlix) **T** There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary ("caveman") numeral.
  - (l) **T** For any two languages  $L_1$  and  $L_2$ , if  $L_1$  is undecidable and there is a recursive reduction of  $L_1$  to  $L_2$ , then  $L_2$  must be undecidable.
  - (li) **F** For any two languages  $L_1$  and  $L_2$ , if  $L_2$  is undecidable and there is a recursive reduction of  $L_1$  to  $L_2$ , then  $L_1$  must be undecidable.
  - (lii) **F** If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is  $O(2^{2^n})$ .
- (liii) T If L is any  $\mathcal{NP}$  language, there must be a  $\mathcal{P}$ -TIME reduction of L to the partition problem.
- (liv) **F** Every bounded function is recursive.
- (lv) **O** If L is  $\mathcal{NP}$  and also co- $\mathcal{NP}$ , then L must be  $\mathcal{P}$ .
- (lvi) **T** If L is  $\mathcal{RE}$  and also co- $\mathcal{RE}$ , then L must be decidable.
- (lvii) T Every language is enumerable.
- (lviii) **F** If a language L is undecidable, then there can be no machine that enumerates L.
- (lix) T There exists a mathematical proposition that can be neither proved nor disproved.
- (lx) T There is a non-recursive function which grows faster than any recursive function.
- (lxi) **T** There exists a machine that runs forever and outputs the string of decimal digits of  $\pi$  (the well-known ratio of the circumference of a circle to its diameter).
- (lxii) **F** For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
- (lxiii) **O Rush Hour**, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is  $\mathcal{NP}$ -complete.
- (lxiv) **O** There is a polynomial time algorithm which determines whether any two regular expressions are equivalent.
- (lxv) O If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.