Answers to True/False Questions, Part I

If you find an error, let me know immediately!

1. True or False. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and $\mathcal{N} \mathcal{P}$ denote \mathcal{P}-TIME and $\mathcal{N} \mathcal{P}$-TIME, respectively.
(i) F Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a 's than b 's and more b 's than c 's. There is some PDA that accepts L.
(ii) \mathbf{T} The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free.
(iii) \mathbf{F} The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is context-free.
(iv) \mathbf{T} The language $\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$ is context-free.
(v) \mathbf{T} The intersection of any three regular languages is regular.
(vi) \mathbf{T} The intersection of any regular language with any context-free language is context-free.
(vii) \mathbf{F} The intersection of any two context-free languages is context-free.
(viii) \mathbf{T} If L is a context-free language over an alphabet with just one symbol, then L is regular.
(ix) \mathbf{T} There is a deterministic parser for any context-free grammar. (But not necessarily an LALR parser.)
(x) \mathbf{T} The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
(xi) T Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
(xii) \mathbf{T} The problem of whether a given string is generated by a given context-free grammar is decidable.
(xiii) T If G is a context-free grammar, the question of whether $L(G)=\emptyset$ is decidable.
(xiv) F Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
(xv) T The language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 0\right\}$ is recursive.
(xvi) \mathbf{T} The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is in the class \mathcal{P}-Time.
(xvii) \mathbf{O} There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
(xviii) \mathbf{F} Every undecidable problem is $\mathcal{N} \mathcal{P}$-complete.
(xix) F Every problem that can be mathematically defined has an algorithmic solution.
(xx) F The intersection of two undecidable languages is always undecidable.
(xxi) \mathbf{T} Every $\mathcal{N} \mathcal{P}$ language is decidable.
(xxii) \mathbf{T} The intersection of two $\mathcal{N} \mathcal{P}$ languages must be $\mathcal{N} \mathcal{P}$.
(xxiii) \mathbf{F} If L_{1} and L_{2} are $\mathcal{N} \mathcal{P}$-complete languages and $L_{1} \cap L_{2}$ is not empty, then $L_{1} \cap L_{2}$ must be $\mathcal{N} \mathcal{P}$-complete.
(xxiv) $\mathbf{O} \mathcal{N C}=\mathcal{P}$.
$(\mathrm{xxv}) \mathbf{O} \mathcal{P}=\mathcal{N} \mathcal{P}$.
(xxvi) $\mathbf{O} \mathcal{N} \mathcal{P}=\mathcal{P}$-SPACE
(xxvii) O \mathcal{P}-SPACE $=$ EXP-TIME
(xxviii) O EXP-time $=$ EXP-SPACE
(xxix) \mathbf{F} EXP-time $=\mathcal{P}$-time.
(xxx) F EXP-SPACE $=\mathcal{P}$-SPACE.
(xxxi) \mathbf{T} The traveling salesman problem (TSP) is $\mathcal{N} \mathcal{P}$-complete.
(xxxii) \mathbf{T} The knapsack problem is $\mathcal{N} \mathcal{P}$-complete.
(xxxiii) \mathbf{T} The language consisting of all satisfiable Boolean expressions is $\mathcal{N} \mathcal{P}$-complete.
(xxxiv) \mathbf{T} The Boolean Circuit Problem is in \mathcal{P}.
(xxxv) O The Boolean Circuit Problem is in $\mathcal{N C}$.
(xxxvi) \mathbf{F} If L_{1} and L_{2} are undecidable langugages, there must be a recursive reduction of L_{1} to L_{2}.
(xxxvii) \mathbf{T} The language consisting of all strings over $\{a, b\}$ which have more a 's than b 's is $\operatorname{LR}(1)$.
(xxxviii) \mathbf{T} 2-SAT is \mathcal{P}-TIME.
(xxxix) O 3 -SAT is \mathcal{P}-time.
(xl) \mathbf{T} Primality is \mathcal{P}-TIME.
(xli) \mathbf{T} There is a \mathcal{P}-TIME reduction of the halting problem to 3-SAT.
(xlii) \mathbf{T} Every context-free language is in \mathcal{P}.
(xliii) O Every context-free language is in $\mathcal{N C}$.
(xliv) \mathbf{T} Addition of binary numerals is in $\mathcal{N C}$.
(xlv) O Every context-sensitive language is in \mathcal{P}.
(xlvi) F Every language generated by a general grammar is recursive.
(xlvii) \mathbf{F} The problem of whether two given context-free grammars generate the same language is decidable.
(xlviii) \mathbf{T} The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A fraction is a string. " $314 / 100$ " is in the language, but " $22 / 7$ " is not.)
(xlix) \mathbf{T} There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary ("caveman") numeral.
(l) \mathbf{T} For any two languages L_{1} and L_{2}, if L_{1} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{2} must be undecidable.
(li) F For any two languages L_{1} and L_{2}, if L_{2} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{1} must be undecidable.
(lii) F If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O\left(2^{2^{n}}\right)$.
(liii) \mathbf{T} If L is any $\mathcal{N} \mathcal{P}$ language, there must be a \mathcal{P}-TIME reduction of L to the partition problem.
(liv) \mathbf{F} Every bounded function is recursive.
(lv) \mathbf{O} If L is $\mathcal{N P}$ and also co- $\mathcal{N} \mathcal{P}$, then L must be \mathcal{P}.
(lvi) \mathbf{T} If L is $\mathcal{R E}$ and also co- $\mathcal{R E}$, then L must be decidable.
(lvii) \mathbf{T} Every language is enumerable.
(lviii) \mathbf{F} If a language L is undecidable, then there can be no machine that enumerates L.
(lix) \mathbf{T} There exists a mathematical proposition that can be neither proved nor disproved.
(lx) \mathbf{T} There is a non-recursive function which grows faster than any recursive function.
(lxi) \mathbf{T} There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).
(lxii) F For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
(lxiii) O Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is $\mathcal{N} \mathcal{P}$-complete.
(lxiv) \mathbf{O} There is a polynomial time algorithm which determines whether any two regular expressions are equivalent.
(lxv) O If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.
