University of Nevada, Las Vegas Computer Science 456/656 Spring 2021 Assignment 6: Due Saturday November 12 2022, 11:59 PM

This is the final version of the assignment.

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. Turn in the assignment in the manner given to you by our grader, Janeen Sudiacal.

1. True, false, or open:
(a) \qquad If L_{1} and L_{2} are languages and there is a \mathcal{P}-TIME reduction of L_{1} to L_{2}, and if there is a machine that accepts L_{2} in polynomial time, then there must be a machine that accepts L_{1} in polynomial time.
(b) If L_{1} and L_{2} are languages and there is a \mathcal{P}-TIME reduction of L_{1} to L_{2}, and if there is a machine that accepts L_{1} in polynomial time, then there must be a machine that accepts L_{2} in polynomial time.
(c) If L_{1} is $\mathcal{N} \mathcal{P}$ and L_{2} is $\mathcal{N} \mathcal{P}$-complete, there is a \mathcal{P}-TIME reduction of L_{1} to L_{2}.
(d) If L_{1} and L_{2} are languages and there is a recursive reduction of L_{1} to L_{2}, and if L_{1} is undecidable, then L_{2} is undecidable.
(e) Context-free grammar equivalence is co-RE.
(f) ___ The set of binary numerals for prime numbers is \mathcal{P}-TIME.
(g) __ The factoring problem for binary numerals is \mathcal{P}-TIME.
(h) __ The class of regular languages is closed under intersection.
(i) \quad co- $\mathcal{P}-$ TIME $=\mathcal{P}-$ TIME.
(j) _ The class of context-free languages is closed under union.
(k) __ The class of context-free languages is closed under intersection.
(l) ___ The complement of any undecidable language must be undecidable.
(m) _ Every context-free language can be parsed by an LALR parser.
(n) If a function $f: \mathcal{N} \rightarrow \mathcal{N}$, where \mathcal{N} is the set of natural numbers, has a mathematical definition, then f must be recursive.
(o) If Σ is any alphabet, the set of all languages over Σ is countable.
$(\mathrm{p}) \longrightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$.
(q) 2 SAT is known to be $\mathcal{N} \mathcal{P}$-complete.
(r) _ Every language has a canonical order enumeration.
$(\mathrm{s})-\sqrt{ } 2$ is a recursive real number.
(t) \qquad There is a \mathcal{P}-TIME algorithm which determines whether a given weighted directed graph has a Hamiltonian cycle whose total weight is no greater than a given number. (Given a directed graph G, a Hamiltonian cycle of G is a directed cycle in G that includes every vertex of G exactly once.)
(u) ---------------- It is known that 2-SAT is $\mathcal{N} \mathcal{P}$-complete.
(v) \qquad Every context-free language is in Nick's Class.
(w) \qquad Context-free grammar equivalence is co-RE.
(x) \qquad Every context-free language is accepted by some LALR parser.
(y) \qquad The Circuit Value Problem (CVP) is $\mathcal{N C}$.
(z) \qquad If L is any \mathcal{P}-TIME language, there is an $\mathcal{N C}$ reduction of CVP to L.
2. Correctly state (do not prove) the pumping lemma for context-free languages.
3. Describe a Nick's Class algorithm which finds the maximum of n integers in $O(\log n)$ time, using $n / \log n$ processors.

We have proved, in class (or we will have by the end of class on November 7) that a dynamic programming problem is $\mathcal{N C}$ if it has logarithmic reachback and every subprogram is \mathcal{P}-TIME. Note that the circuit value problem does not have logarithmic reachback, since an arc can stetch from a starting gate all the way to the final gate. You can use this fact to work problems 4 and 5 below. (Read the handout NC.pdf.)
4. Prove that addition of binary numerals is $\mathcal{N C}$. (Hint: This is important for computer architecture.)
5. Prove that every regular language is $\mathcal{N C}$.
6. Prove that every decidable language can be enumerated in canonical order by some machine.
7. (a) State the Church-Turing thesis.
(b) Why is the Church-Turing thesis important?
8. The CF grammar given below generates $L=\left\{a^{n} b^{m}: n, m \geq 0\right\} . S$ is the start symbol, and there are two other variables, A and B. An LALR parser for that grammar is also given. Walk through the computation of the parser for the input string $a a b$.

1. $S \rightarrow A_{2} B_{4}$
2. $A \rightarrow A_{2} a_{3}$
3. $A \rightarrow \lambda$
4. $B \rightarrow B_{4} b_{5}$
5. $B \rightarrow \lambda$

ACTION GOTO

	a	b	$\$$	S	A	B
0	$r 3$	$r 3$	$r 3$	1	2	
1			HALT			
2	$s 3$	$r 5$	$r 5$			4
3	$r 2$	$r 2$	$r 2$			
4		$s 5$	$r 1$			
5		$r 4$	$r 4$			

