University of Nevada, Las Vegas Computer Science 456/656 Spring 2021 Answers to Assignment 4: Due October 14 2022

1. Let L be the language of all binary numbers for non-negative integers that are equivalent to 2 modulo 3, where leading zeros are allowed. Give a regular expression for L.

There are infinitely many correct answers. It is not clear which the simplest is. Here is one I came up with.

$$0^{*}1(10^{*}1)^{*}0(1+0(10*1)^{*}0)^{*}$$

If I had said "equivalent to 1 mod 3" instead of equivalent to 2, the problem would have been much easier. Here is my answer to that one.

$$0^{*}1(10^{*}1 + 01^{*}0)^{*}$$

2. Let L be the language accepted by the DFA shown below. Give a regular expression for L.

This problem is much harder than I had realized, and it is nearly impossible to grade. Do not grade it. 3. Let $L = \{a^n b^{2n} : n \ge 0\}$. Draw a PDA that accepts L.

This PDA reads and pushes a's in State 0, then non-deterministically moves to State 1 when that is finished. It then repeatedly reads b and moves to State 2, then reads one more b and moves back to State 1. When the stack is empty, it moves to State 3. With some small changes, we could draw a DPDA.

4. Correctly state (not prove) the pumping lemma for regular languages, then use the pumping lemma to prove that the language L given in Problem 3 is not regular.

For any regular language L, there is a positive integer p such that, for any $w \in L$ of length at least p, called a pumping length of L, there exist strings x, y, z such that the following four conditions hold:

- 1. xyz = w
- 2. $|xy| \leq p$

3.
$$|y| \ge 1$$

4. For any integer $i \ge 0, xy^i z \in L$.

Suppose $L = \{a^n b^{2n} : n \ge 0\}$ is regular. L must have a pumping length, p. Let $w = a^p b^{2p}$. There exist x, y, z such that the four conditions hold. Since $|xy| \le p$, xy is a substring of a^p . Thus $y = a^k$ for some integer $k \ge 1$. Let i = 0. Then $xy^i z = xz = a^{p-k}b^{2p} \notin L$, contradiction.

- 5. (a) Resolve the paradox given in the handout recenum The definition of the function f in the handout is correct; the function f does exist.
 The resolution of the paradox is that the enumeration of L_{fnc} given in the proof exists, but cannot be recursive. That is, L_{fnc} is not RE.
 - (b) Describe a specific language which is not recursively enumerable. Well, L_{fnc} is an example. Another example you've seen before is the context-free grammar equivalence problem, that is, the set of strings of the form $\langle G_1 \rangle \langle G_2 \rangle$ such that G_1 and G_2 are equivalent context-free grammars. That problem is not RE, although the proof is too long for us to do it in class.
- 6. Prove that the halting problem is undecidable.

One proof is in the list of handouts, in a document called halt.pdf. There are shorter proofs.

7. Consider the following CF grammar and LALR parser.

	ACTION						GOTO	
1. $S \rightarrow i_2 S_3$		a	i	e	w	\$	S	
$2. S \to i_2 S_3 e_4 S_5$	0	s8	<i>s</i> 2		s6		1	
3. $S \rightarrow w_6 S_7$	1					halt		
4. $S \rightarrow a_8$	2	s8	<i>s</i> 2		<i>s</i> 6		3	
	3			<i>s</i> 4		r1		
	4	s8	<i>s</i> 2		s6		5	
·	5			r2		r2		
	6	s8	<i>s</i> 2		<i>s</i> 6		7	
	7			r3		r3		
	8			r4		r4		

Walk through the computation of this parser where the input string is *iiwaeia*.

stack		input	action	output
0	:	iiwaeia		
$_{0}i_{2}$:	iwaeia	<i>s</i> 2	
$_{0}i_{2}i_{2}$:	waeia\$	s2	
$_{0}i_{2}i_{2}w_{6}$:	aeia\$	s6	
$_{_{0}}i_{_{2}}i_{_{2}}w_{_{6}}a_{_{8}}$:	eia\$	s8	
$_{0}i_{2}i_{2}w_{6}S_{7}$:	eia\$	r4	4
$_{0}i_{2}i_{2}S_{3}$:	eia\$	r3	43
$_{0}i_{2}i_{2}S_{3}e_{4}$:	ia\$	<i>s</i> 4	43
$_{_{0}}i_{_{2}}i_{_{2}}S_{_{3}}e_{_{4}}i_{_{2}}$:	a\$	s2	43
$_{0}i_{2}i_{2}S_{3}e_{4}i_{2}a_{8}$:	\$	<i>s</i> 8	43
$_{0}i_{2}i_{2}S_{3}e_{4}i_{2}S_{7}$:	\$	r4	434
$_{0}i_{2}i_{2}S_{3}e_{4}S_{3}$:	\$	r1	4341
$_{0}i_{2}i_{2}S_{3}e_{4}S_{5}$:	\$	r1	4341
$_{0}i_{2}S_{3}$:	\$	r2	43412
$_{0}S_{1}$:	\$	r1	434121
$_{0}S_{1}$:	\$	HALT	434121