
Parallel Computation

Parallel computation means computation with any number of processors
working simultaneously, possibly sharing data. The work complexity of a
parallel computation is defined to be the time complexity times the number
of processors. Number of processors is worst case; if the number of steps is
T and we use pt processors at step t, for each t, the number of processors
for the computation is defined to be max {pt}.

Nick’s Class. We say that a computation is NC, in Nick’s Class, if it
takes polylogarithmic time with polynomially many processors.

Balancing. Suppose a computation consists of log n steps, and we use 2t

processors at the tth step for each 1 ≤ t ≤ log n. We are taking logarithms
to be base 2, so we use n processors at the last step, and no more than n

at any step. The work complexity of the computation is thus n log n. But
if we let wt be the work done at step t,

∑
wt = Θ(n). So, you would think

it would be possible to have the total work of the computation be Θ(n), as
well. This is possible by rearranging the computation.

General dynamic programming is not believed to be NC. However, many
practical dynamic programming problems are NC.

Let S1, S2, . . . Sn be the subproblems of a dynamic program P . We define
P to be proper if the following conditions hold.

1. The input to S0 is a string of O(log n) bits.

2. For i < n, the output of subprogram Si is a string of O(log n) bits.

3. For i > 0, the input of subprogram S1 is the output of subprogram Si−1.

4. The computation of each subprogram takes polylogarithmic time and
uses polynomially many processors.

5. The output of subprogram Sn is one bit.

Theorem 1 If P is a proper dynamic program, then P is NC.

Proof: Let ℓ be the maximum length of an input string of a subprogram; by
padding with zeros, we require that all strings have length ℓ. Let Σ = {0.1}

1

and L = Σℓ, the set of binary strings of length ℓ. Since ℓ = O(log n), |L| = 2ℓ

is a polynomial function of n. We write LL for the set of functions L → L.
Thinking of a function as a set of ordered pairs, any F ∈ LL is a subset of
L×L of order 2ℓ. We store eacn F ∈ LL as a table TF with 2ℓ rows, one for
each σ ∈ L, and 2ℓ columns to store the ordered pair (σ, F (σ)) for each row.
The composition of two such functions can be computed in polylogarithmic
time with polynomially many processors, as follows: for any F,G ∈ LL and
any σ ∈ L, F ◦G(σ) = F (G(σ)). Use one processor for each σ ∈ L, a total of
2ℓ processors. To compute F (G(σ)), that processor fetches τ = F (σ) from
TF , then searches TG for row τ , then fetches G(τ), then stores the ordered
pair (σ,G(τ)) in TF◦G.

Let σ0 be the input string of P , let σi ∈ L be the output of Si, and let
F i be the function computed by Si, i.e., F

i(σi−1) = σi. For i < j, let F j
i

be the composition F j−1 ◦ F j−2 ◦ · · · ◦ F i; that is, F j
i (σi) = σj Note that

F k
i = F k

j ◦ F j
i for i < j < k.

Finally, we give an NC computation for P . We can assume n is a power of
2.

1. Compute F t
t−1‘ = F t for each 1 ≤ t ≤ n.

2. Using composition, for each p = 2k ≤ n, compute F tp

(t−1)p for 1 ≤ t ≤

n/p. For example:
F 2
0 = F 2

1 ◦ F 1
0

F 4
2 = F 4

3 ◦ F 3
2

F 6
4 = F 6

5 ◦ F 5
4

. . . etc.
F 4
0 = F 4

2 ◦ F 2
0

F 8
4 = F 8

6 ◦ F 6
4

F 12
8 = F 12

10 ◦ F 10
8

. . . etc.
F 96
80 = F 96

88 ◦ F 88
80

. . . etc.
Finally, σn = F n

0 (σ0)

The computation consists of log n phases, each of which can be done using
polynomially many processors in polylogarithmic time. The output is the
first bit of σn. Thus P is NC.

2

Regular Languages

Lemma 1 Every regular language is NC.

Proof: Let L be a regular language over an alphabet Σ. Let M be a DFA
which decides L, with state set Q, transition function δ : Q×Σ → Q, where
the set of final states is F ⊆ Q.

Let w be a string over Σ of length n. Let w[i] be the ith symbol of w. Let
Pw be the dynamic program with subprograms S1, . . . Sn, where

1. The input of S1 is the start state of M .

2. For i > 1, The input of Si is the output of Si−1. a member of Q.

3. Si computes the function fi : Q → Q, where fi(q) = δ(q, w[i]), which
is the output of Si for i < n. The output of Sn is 1 if Sn computes a
member of F , otherwise 0.

Thus, for 1 ≤ i ≤ n, the input of Si is the (i− 1)st state in the computation
of M with input w, and its output is the ith state of that computation,
unless i = n, in which case the output is Boolean: 1 if w is accepted by M ,
0 if not.

Each output is a single bit or a member of Q, whose size is taken to be
constant. By Theorem 1, L is NC.

0.1 Pipeline Analysis

In your future, as a professional programmer (perhaps), you will need to
judge whether a sequential program can be efficiently parallelized. If so,
Theorem 2 below will be the result to look at.

Let DP be a dynamic program with subproblems S0, . . . Sn−1. There are p0

bits of input. Each subproblem can read bits from any earlier subproblem.
We define Pi to be the pipeline of information flowing between Si−1 and Si.
Let pi be the number of bits in Pi. The bits of Pi could be input bits or
could have been in the input, or have been sent by an subprogram Sj for
j < i. Let Pn be the pipeline of bits of output of DP , and pn the number of
bits of output, and that pi = O(log n). We assume that the computation of
each Si takes polylogarithmic time and uses polynomially many processors.

3

S

P P

S SS SS
 0

 0

1 2 3 4 5

P P P P P21 3 4 5 6

In the example shown in the figure, n = 7, p0 = 2, p1 = p2 = p6 = 3, and
p3 = p4 = p5 = 4.

Theorem 2 The computation of DP is emulated by an NC program.

Proof: Note that Pi is a bitstring of length pi. The goal is to compute the
output string Pn from P0, the input string.

For any 0 ≤ i < j ≤ n, let F j
i be the function which returns Pj given Pi,

which can easily be computed in polynomial time using one processor. For
some constant k, pi ≤ k log n for each i, and the computation time of each
Si is no greater than logk n.

By the same reasoning used in the proof of Theorem 1, each F j
i is one of at

most nk functions, each stored as polynomially many bits. We can compute
each F i

i−1 in polylogarithmic time using polynomially many processors, and

we can compute F j
i from F ℓ

i and F j
ℓ , for any i < ℓ < j, in constant time

with polynomially many processors.

Again, in the manner used in Theorem 1, we can compute F n
0 in O(log n)

phases, each of which takes at most n processors and uses polylogarithmic
time. Finally, Pn = F n

0 (P0).

4

