Parallel Computation

Parallel computation means computation with any number of processors working simultaneously, possibly sharing data. The work complexity of a parallel computation is defined to be the time complexity times the number of processors. Number of processors is worst case; if the number of steps is T and we use p_t processors at step t, for each t, the number of processors for the computation is defined to be $\max\{p_t\}$.

Nick’s Class. We say that a computation is \mathcal{NC}, in Nick’s Class, if it takes polylogarithmic time with polynomially many processors.

Balancing. Suppose a computation consists of $\log n$ steps, and we use 2^t processors at the t^{th} step for each $1 \leq t \leq \log n$. We are taking logarithms to be base 2, so we use n processors at the last step, and no more than n at any step. The work complexity of the computation is thus $n \log n$. But if we let w_t be the work done at step t, $\sum w_t = \Theta(n)$. So, you would think it would be possible to have the total work of the computation be $\Theta(n)$, as well. This is possible by rearranging the computation.

General dynamic programming is not believed to be \mathcal{NC}. However, many practical dynamic programming problems are \mathcal{NC}.

Let $S_1, S_2, \ldots S_n$ be the subproblems of a dynamic program \mathcal{P}. We define \mathcal{P} to be proper if the following conditions hold.

1. The input to S_0 is a string of $O(\log n)$ bits.
2. For $i < n$, the output of subprogram S_i is a string of $O(\log n)$ bits.
3. For $i > 0$, the input of subprogram S_i is the output of subprogram S_{i-1}.
4. The computation of each subprogram takes polylogarithmic time and uses polynomially many processors.
5. The output of subprogram S_n is one bit.

Theorem 1 If \mathcal{P} is a proper dynamic program, then \mathcal{P} is \mathcal{NC}.

Proof: Let ℓ be the maximum length of an input string of a subprogram; by padding with zeros, we require that all strings have length ℓ. Let $\Sigma = \{0, 1\}$
and \(L = \Sigma^\ell \), the set of binary strings of length \(\ell \). Since \(\ell = O(\log n) \), \(|L| = 2^\ell \) is a polynomial function of \(n \). We write \(L^L \) for the set of functions \(L \to L \). Thinking of a function as a set of ordered pairs, any \(F \in L^L \) is a subset of \(L \times L \) of order \(2^\ell \). We store each \(F \in L^L \) as a table \(T_F \) with \(2^\ell \) rows, one for each \(\sigma \in L \), and \(2\ell \) columns to store the ordered pair \((\sigma, F(\sigma))\) for each row.

The composition of two such functions can be computed in polylogarithmic time with polynomially many processors, as follows: for any \(F, G \in L^L \) and any \(\sigma \in L \), \(F \circ G(\sigma) = F(G(\sigma)) \). Use one processor for each \(\sigma \in L \), a total of \(2^\ell \) processors. To compute \(F(\sigma) \), that processor fetches \(\tau = F(\sigma) \) from \(T_F \), then searches \(T_G \) for row \(\tau \), then fetches \(G(\tau) \), then stores the ordered pair \((\sigma, G(\tau))\) in \(T_{F \circ G} \).

Let \(\sigma_0 \) be the input string of \(P \), let \(\sigma_i \in L \) be the output of \(S_i \), and let \(F^i \) be the function computed by \(S_i \), i.e., \(F^i(\sigma_{i-1}) = \sigma_i \). For \(i < j \), let \(F^j_i \) be the composition \(F^{j-1} \circ F^{j-2} \circ \cdots \circ F^i \); that is, \(F^j_i(\sigma_i) = \sigma_j \). Note that \(F^k_i = F^k_j \circ F^j_i \) for \(i < j < k \).

Finally, we give an \(\mathcal{NC} \) computation for \(P \). We can assume \(n \) is a power of 2.

1. Compute \(F^t_{t-1} = F^t \) for each \(1 \leq t \leq n \).

2. Using composition, for each \(p = 2^k \leq n \), compute \(F^{hp}_{(t-1)p} \) for \(1 \leq t \leq n/p \). For example:

 \[
 \begin{align*}
 F^2_0 &= F^2_1 \circ F^1_0 \\
 F^4_0 &= F^4_3 \circ F^3_2 \\
 F^6_0 &= F^6_5 \circ F^5_4 \\
 \vdots & \quad \text{etc.} \\
 F^4_0 &= F^2_2 \circ F^2_0 \\
 F^8_0 &= F^6_6 \circ F^6_4 \\
 F^{12}_8 &= F^{12}_{10} \circ F^{10}_8 \\
 \vdots & \quad \text{etc.} \\
 F^{96}_{80} &= F^{88}_{88} \circ F^{88}_{80} \\
 \vdots & \quad \text{etc.} \\
 \end{align*}
 \]

Finally, \(\sigma_n = F^n_0(\sigma_0) \)

The computation consists of \(\log n \) phases, each of which can be done using polynomially many processors in polylogarithmic time. The output is the first bit of \(\sigma_n \). Thus \(P \) is \(\mathcal{NC} \).
Regular Languages

Lemma 1 Every regular language is \mathcal{NC}.

Proof: Let L be a regular language over an alphabet Σ. Let M be a DFA which decides L, with state set Q, transition function $\delta : Q \times \Sigma \rightarrow Q$, where the set of final states is $F \subseteq Q$.

Let w be a string over Σ of length n. Let $w[i]$ be the i^{th} symbol of w. Let P^w be the dynamic program with subprograms $S_1, \ldots S_n$, where

1. The input of S_1 is the start state of M.
2. For $i > 1$, The input of S_i is the output of S_{i-1}. a member of Q.
3. S_i computes the function $f_i : Q \rightarrow Q$, where $f_i(q) = \delta(q, w[i])$, which is the output of S_i for $i < n$. The output of S_n is 1 if S_n computes a member of F, otherwise 0.

Thus, for $1 \leq i \leq n$, the input of S_i is the $(i - 1)^{st}$ state in the computation of M with input w, and its output is the i^{th} state of that computation, unless $i = n$, in which case the output is Boolean: 1 if w is accepted by M, 0 if not.

Each output is a single bit or a member of Q, whose size is taken to be constant. By Theorem 1, L is \mathcal{NC}. \hfill \blacksquare

0.1 Pipeline Analysis

In your future, as a professional programmer (perhaps), you will need to judge whether a sequential program can be efficiently parallelized. If so, Theorem 2 below will be the result to look at.

Let \mathcal{DP} be a dynamic program with subproblems $S_0, \ldots S_{n-1}$. There are p_0 bits of input. Each subproblem can read bits from any earlier subproblem. We define P_i to be the pipeline of information flowing between S_{i-1} and S_i. Let p_i be the number of bits in P_i. The bits of P_i could be input bits or could have been in the input, or have been sent by an subprogram S_j for $j < i$. Let P_n be the pipeline of bits of output of \mathcal{DP}, and p_n the number of bits of output, and that $p_i = O(\log n)$. We assume that the computation of each S_i takes polylogarithmic time and uses polynomially many processors.
In the example shown in the figure, \(n = 7 \), \(p_0 = 2 \), \(p_1 = p_2 = p_6 = 3 \), and \(p_3 = p_4 = p_5 = 4 \).

Theorem 2 The computation of \(\mathcal{DP} \) is emulated by an \(\mathcal{NC} \) program.

Proof: Note that \(P_i \) is a bitstring of length \(p_i \). The goal is to compute the output string \(P_n \) from \(P_0 \), the input string.

For any \(0 \leq i < j \leq n \), let \(F_{ij}^j \) be the function which returns \(P_j \) given \(P_i \), which can easily be computed in polynomial time using one processor. For some constant \(k \), \(p_i \leq k \log n \) for each \(i \), and the computation time of each \(S_i \) is no greater than \(\log^k n \).

By the same reasoning used in the proof of Theorem 1, each \(F_{ij}^j \) is one of at most \(n^k \) functions, each stored as polynomially many bits. We can compute each \(F_{i-1}^i \) in polylogarithmic time using polynomially many processors, and we can compute \(F_{ij}^j \) from \(F_{i}^\ell \) and \(F_{\ell}^j \), for any \(i < \ell < j \), in constant time with polynomially many processors.

Again, in the manner used in Theorem 1, we can compute \(F_0^n \) in \(O(\log n) \) phases, each of which takes at most \(n \) processors and uses polylogarithmic time. Finally, \(P_n = F_0^n(P_0) \).