Parallel Computation

Parallel computation means computation with any number of processors working simultaneously, possibly sharing data. The work complexity of a parallel computation is defined to be the time complexity times the number of processors. Number of processors is worst case; if the number of steps is T and we use p_{t} processors at step t, for each t, the number of processors for the computation is defined to be max $\left\{p_{t}\right\}$.

Nick's Class. We say that a computation is $\mathcal{N C}$, in Nick's Class, if it takes polylogarithmic time with polynomially many processors.

Balancing. Suppose a computation consists of $\log n$ steps, and we use 2^{t} processors at the $t^{\text {th }}$ step for each $1 \leq t \leq \log n$. We are taking logarithms to be base 2 , so we use n processors at the last step, and no more than n at any step. The work complexity of the computation is thus $n \log n$. But if we let w_{t} be the work done at step $t, \sum w_{t}=\Theta(n)$. So, you would think it would be possible to have the total work of the computation be $\Theta(n)$, as well. This is possible by rearranging the computation.
General dynamic programming is not believed to be $\mathcal{N C}$. However, many practical dynamic programming problems are $\mathcal{N C}$.
Let $S_{1}, S_{2}, \ldots S_{n}$ be the subproblems of a dynamic program \mathcal{P}. We define \mathcal{P} to be proper if the following conditions hold.

1. The input to S_{0} is a string of $O(\log n)$ bits.
2. For $i<n$, the output of subprogram S_{i} is a string of $O(\log n)$ bits.
3. For $i>0$, the input of subprogram S_{1} is the output of subprogram S_{i-1}.
4. The computation of each subprogram takes polylogarithmic time and uses polynomially many processors.
5. The output of subprogram S_{n} is one bit.

Theorem 1 If \mathcal{P} is a proper dynamic program, then \mathcal{P} is $\mathcal{N C}$.
Proof: Let ℓ be the maximum length of an input string of a subprogram; by padding with zeros, we require that all strings have length ℓ. Let $\Sigma=\{0.1\}$
and $L=\Sigma^{\ell}$, the set of binary strings of length ℓ. Since $\ell=O(\log n),|L|=2^{\ell}$ is a polynomial function of n. We write L^{L} for the set of functions $L \rightarrow L$. Thinking of a function as a set of ordered pairs, any $F \in L^{L}$ is a subset of $L \times L$ of order 2^{ℓ}. We store eacn $F \in L^{L}$ as a table T_{F} with 2^{ℓ} rows, one for each $\sigma \in L$, and 2ℓ columns to store the ordered pair $(\sigma, F(\sigma))$ for each row. The composition of two such functions can be computed in polylogarithmic time with polynomially many processors, as follows: for any $F, G \in L^{L}$ and any $\sigma \in L, F \circ G(\sigma)=F(G(\sigma))$. Use one processor for each $\sigma \in L$, a total of 2^{ℓ} processors. To compute $F(G(\sigma))$, that processor fetches $\tau=F(\sigma)$ from T_{F}, then searches T_{G} for row τ, then fetches $G(\tau)$, then stores the ordered pair $(\sigma, G(\tau))$ in $T_{F \circ G}$.
Let σ_{0} be the input string of \mathcal{P}, let $\sigma_{i} \in L$ be the output of S_{i}, and let F^{i} be the function computed by S_{i}, i.e., $F^{i}\left(\sigma_{i-1}\right)=\sigma_{i}$. For $i<j$, let F_{i}^{j} be the composition $F^{j-1} \circ F^{j-2} \circ \cdots \circ F^{i}$; that is, $F_{i}^{j}\left(\sigma_{i}\right)=\sigma_{j}$ Note that $F_{i}^{k}=F_{j}^{k} \circ F_{i}^{j}$ for $i<j<k$.
Finally, we give an $\mathcal{N C}$ computation for \mathcal{P}. We can assume n is a power of 2.

1. Compute $F_{t-1}^{t}{ }^{‘}=F^{t}$ for each $1 \leq t \leq n$.
2. Using composition, for each $p=2^{k} \leq n$, compute $F_{(t-1) p}^{t p}$ for $1 \leq t \leq$ n / p. For example:
$F_{0}^{2}=F_{1}^{2} \circ F_{0}^{1}$
$F_{2}^{4}=F_{3}^{4} \circ F_{2}^{3}$
$F_{4}^{6}=F_{5}^{6} \circ F_{4}^{5}$
... etc.
$F_{0}^{4}=F_{2}^{4} \circ F_{0}^{2}$
$F_{4}^{8}=F_{6}^{8} \circ F_{4}^{6}$
$F_{8}^{12}=F_{10}^{12} \circ F_{8}^{10}$
... etc.
$F_{80}^{96}=F_{88}^{96} \circ F_{80}^{88}$
... etc.
Finally, $\sigma_{n}=F_{0}^{n}\left(\sigma_{0}\right)$
The computation consists of $\log n$ phases, each of which can be done using polynomially many processors in polylogarithmic time. The output is the first bit of σ_{n}. Thus \mathcal{P} is $\mathcal{N C}$.

Regular Languages

Lemma 1 Every regular language is $\mathcal{N C}$.
Proof: Let L be a regular language over an alphabet Σ. Let M be a DFA which decides L, with state set Q, transition function $\delta: Q \times \Sigma \rightarrow Q$, where the set of final states is $F \subseteq Q$.
Let w be a string over Σ of length n. Let $w[i]$ be the $i^{\text {th }}$ symbol of w. Let \mathcal{P}^{w} be the dynamic program with subprograms $S_{1}, \ldots S_{n}$, where

1. The input of S_{1} is the start state of M.
2. For $i>1$, The input of S_{i} is the output of S_{i-1}. a member of Q.
3. S_{i} computes the function $f_{i}: Q \rightarrow Q$, where $f_{i}(q)=\delta(q, w[i])$, which is the output of S_{i} for $i<n$. The output of S_{n} is $\mathbf{1}$ if S_{n} computes a member of F, otherwise $\mathbf{0}$.

Thus, for $1 \leq i \leq n$, the input of S_{i} is the $(i-1)^{\text {st }}$ state in the computation of M with input w, and its output is the $i^{\text {th }}$ state of that computation, unless $i=n$, in which case the output is Boolean: 1 if w is accepted by M, 0 if not.
Each output is a single bit or a member of Q, whose size is taken to be constant. By Theorem 1, L is $\mathcal{N C}$.

0.1 Pipeline Analysis

In your future, as a professional programmer (perhaps), you will need to judge whether a sequential program can be efficiently parallelized. If so, Theorem 2 below will be the result to look at.
Let $\mathcal{D P}$ be a dynamic program with subproblems $S_{0}, \ldots S_{n-1}$. There are p_{0} bits of input. Each subproblem can read bits from any earlier subproblem. We define P_{i} to be the pipeline of information flowing between S_{i-1} and S_{i}. Let p_{i} be the number of bits in P_{i}. The bits of P_{i} could be input bits or could have been in the input, or have been sent by an subprogram S_{j} for $j<i$. Let P_{n} be the pipeline of bits of output of $\mathcal{D P}$, and p_{n} the number of bits of output, and that $p_{i}=O(\log n)$. We assume that the computation of each S_{i} takes polylogarithmic time and uses polynomially many processors.

In the example shown in the figure, $n=7, p_{0}=2, p_{1}=p_{2}=p_{6}=3$, and $p_{3}=p_{4}=p_{5}=4$.
Theorem 2 The computation of $\mathcal{D P}$ is emulated by an $\mathcal{N C}$ program.
Proof: Note that P_{i} is a bitstring of length p_{i}. The goal is to compute the output string P_{n} from P_{0}, the input string.
For any $0 \leq i<j \leq n$, let F_{i}^{j} be the function which returns P_{j} given P_{i}, which can easily be computed in polynomial time using one processor. For some constant $k, p_{i} \leq k \log n$ for each i, and the computation time of each S_{i} is no greater than $\log ^{k} n$.
By the same reasoning used in the proof of Theorem 1 , each F_{i}^{j} is one of at most n^{k} functions, each stored as polynomially many bits. We can compute each F_{i-1}^{i} in polylogarithmic time using polynomially many processors, and we can compute F_{i}^{j} from F_{i}^{ℓ} and F_{ℓ}^{j}, for any $i<\ell<j$, in constant time with polynomially many processors.
Again, in the manner used in Theorem 1, we can compute F_{0}^{n} in $O(\log n)$ phases, each of which takes at most n processors and uses polylogarithmic time. Finally, $P_{n}=F_{0}^{n}\left(P_{0}\right)$.

