Push Down Automata and Deterministic Push Down Automata

Definitions

We use the following definitions given in your textbook, Formal Languages and Automata, by Peter Linz.

Definition 1 If Σ is any alphabet, let $\Sigma_{\lambda} = \Sigma \cup \{\lambda\}$. (Most books use ε instead of γ , but we'll stick to the notation in our textbook.)

Definition 2 If S is any set, $\mathcal{P}(S) = 2^S$ is the set of all subsets of S. We write $\mathcal{F}(S) \subseteq \mathcal{P}(S)$ to be the set of all finite subsets of S.

Definition 3 A PDA is a septuple (7-tuple) $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ where

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- 3. Γ is the stack alphabet,
- 4. $\delta: Q \times \Sigma_{\delta} \times \Gamma \longrightarrow \mathcal{F}(Q \times \Gamma^*)$ is the transition function,
- 5. $q_0 \in Q$ is the start state, and
- 6. $z \in \Gamma$ is the bottom-of-stack symbol.
- 7. $F \subseteq Q$ is the set of accept states.

Configurations and Computations of a PDA

If $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a PDA, we define a *configuration* of M to be an ordered triple $\mathbf{i} = (\sigma, q, w)$ where $\sigma \in \Gamma^*$ is the current stack, $q \in Q$ is the current state, and $w \in \Sigma^*$ is the current (unread) input.

The start configuration of M is the configuration (z, q_0, w) for some $w \in \Sigma^*$. A configuration (σ, q, w) is final if $q \in F$ and $w = \lambda$. If **i** and **i'** are configurations of M, we write $\mathbf{i} \mapsto \mathbf{i'}$ to mean that, if M is in configuration **i**, then M can possibly read a symbol, pop the top symbol off stack, then push any string onto the stack, then change its configuration to $\mathbf{i'}$. We say that M is deterministic if, for each **i**, there is at most one choice of $\mathbf{i'}$.

A computation of M is a finite sequence of configurations $\mathbf{i}_0, \mathbf{i}_1 \dots \mathbf{i}_n$ such that $\mathbf{i}_i \mapsto \mathbf{i}_{i+1}$ for all $i \mathbf{i}_0$ is a start configuration of M. and \mathbf{i}_n is a final configuration of M.

Examples

Palindromes

What is the language?