Push Down Automata and Deterministic Push Down Automata

Definitions

We use the following definitions given in your textbook, Formal Languages and Automata, by Peter Linz.

Definition 1 If \(\Sigma \) is any alphabet, let \(\Sigma_\lambda = \Sigma \cup \{ \lambda \} \). (Most books use \(\varepsilon \) instead of \(\gamma \), but we’ll stick to the notation in our textbook.)

Definition 2 If \(S \) is any set, \(\mathcal{P}(S) = 2^S \) is the set of all subsets of \(S \). We write \(\mathcal{F}(S) \subseteq \mathcal{P}(S) \) to be the set of all finite subsets of \(S \).

Definition 3 A PDA is a septuple (7-tuple) \(M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \) where

1. \(Q \) is the set of states,
2. \(\Sigma \) is the input alphabet,
3. \(\Gamma \) is the stack alphabet,
4. \(\delta : Q \times \Sigma \delta \times \Gamma \rightarrow \mathcal{F}(Q \times \Gamma^*) \) is the transition function,
5. \(q_0 \in Q \) is the start state, and
6. \(z \in \Gamma \) is the bottom-of-stack symbol.
7. \(F \subseteq Q \) is the set of accept states.

Configurations and Computations of a PDA

If \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \) is a PDA, we define a configuration of \(M \) to be an ordered triple \(i = (\sigma, q, w) \) where \(\sigma \in \Gamma^* \) is the current stack, \(q \in Q \) is the current state, and \(w \in \Sigma^* \) is the current (unread) input.

The start configuration of \(M \) is the configuration \((z, q_0, w) \) for some \(w \in \Sigma^* \). A configuration \((\sigma, q, w) \) is final if \(q \in F \) and \(w = \lambda \). If \(i \) and \(i' \) are configurations of \(M \), we write \(i \xrightarrow{\cdot} i' \) to mean that, if \(M \) is in configuration \(i \), then \(M \) can possibly read a symbol, pop the top symbol off stack, then push any string onto the stack, then change its configuration to \(i' \). We say that \(M \) is deterministic if, for each \(i \), there is at most one choice of \(i' \).

A computation of \(M \) is a finite sequence of configurations \(i_0, i_1 \ldots i_n \) such that \(i_i \xrightarrow{\cdot} i_{i+1} \) for all \(i \). \(i_0 \) is a start configuration of \(M \). and \(i_n \) is a final configuration of \(M \).
Examples

\[
a/zuza
b/u/λ
a/u/uu
\]

Palindromes

\[
$\lambda/z/λ$
\]

What is the language?