
Recursive Enumeration and Canonical Order

We write N to mean the natural numbers, the numbers you learned in pre-school: the num-

bers people used before anyone invented negative numbers, rational numbers, real numbers,

complex numbers, and even zero. In other words, the positive integers.

Every language is enumerable. We say that a language L is recursively enumerable if there is

a machine which computes an enumeration of L. Every recursive (that is, decidable) language

is recursively enumerable, but not vice-versa.

The language HALT, which we define to be {〈M〉w : M halts with input w} is recursively

enumerable (RE) but not decidable.

Theorem 1 A language L is accepted by some machine if and only if L is recursively enu-

merable.

Paradox!

Let M be the class of machines which take one natural number as input and give one natural

number as output. Thus, each M ∈ M computes a function N → N . Since it can be

computed, that function is recursive. For each M ∈ M, pick a string 〈M〉 which describes M .

Let Lfnc = {〈M〉 : M ∈ M}.

Lfnc is a language, hence has an enumeration. Let 〈M1〉, 〈M2〉 . . . be an enumeration of Lfnc,

and let fi : N → N be the function computed byMi. By our definition of Lfnc, every recursive

(computable) f : N → N is equal to fi for some i.

Now use diagonalization. We define a function f : N → N as follows. For any n ∈ N , let

f(n) = 1 + fn(n). Then f is not equal to any fi since f(i) = fi(i) + 1, hence is not recursive.

But my definition gives an easy computation of f . Contradiction!

Canonical Order

Every language L has a canonical order, defined as follows. For u, v ∈ L, we say that u

is earlier than v in canonical order if |u| < |v|, or if |u| = |v| and u is before v in lexical

(alphabetical) order.

For example, if Σ = {0, 1}, the binary alphabet, the canonicl order of Σ∗ is

λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .

Theorem 2 A language L is decidable if and only if there is a machine which enumerates L

in canonical order.


