This version Tue Sep 13 15:17:01 PDT 2022

Reductions

Throughout, if we say "machine" we mean deterministic machine, unless we specifically say "non-deterministic."

Let L_{1}, L_{2} be languages over the alphabets Σ_{1} and Σ_{2}, respectively. A function $R: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is a reduction of L_{1} to L_{2} if, for all $w \in \Sigma_{1}^{*}, w \in L_{1}$ if and only if $R(w) \in L_{2}$.
A reduction R is a function, which may not be recursive (computable). However, any reduction that we might use is recursive. Any reduction that we use in the theory of $\mathcal{N} \mathcal{P}$-complete languages is not only recursive, but is also computable in polynomial time.

Instances. We frequently discuss the complexity of a problem, which we can interpret as a language. But we usually have a concept of "instances" of a problem. For example, for the Boolean satisfiability problem (SAT), an instance is a Boolean expression, rather than an arbitrary string of symbols. $L_{\text {bool }} \subseteq \Sigma^{*}$ is the language of all Boolean expressions, where Σ is an appropriate alphabet. Since $L_{\text {bool }}$ is context-free, it is \mathcal{P}. Later, we give a reduction of SAT to 3-SAT. The reduction we give is not defined on all of Σ^{*}, but only on $L_{\text {bool }}$. We justify this by observing that it is easy to recognize whether a string is a member of $L_{\text {bool }}$. If $R: L_{\text {bool }} \rightarrow \Sigma^{*}$ has the property that $e \in$ SAT if and only if $R(e) \in 3$ SAT, we extend R by defining it to be some default string, such as the empty string, for all members of Σ^{*} which are not in $L_{\text {bool }}$. Then R is a reduction in the original sense.
The reductions used in most practical applications, including those in this document, satisfy an additional condition, namely that they are functions of instances of one problem to instances of another. For example, $L_{3 \mathrm{cnf}}$ is the set of all Boolean expressions in 3-CNF form, while $L_{3 \text { sat }} \subseteq L_{3 \mathrm{cnf}}$ is the language of all satisfiable Boolean expressions in 3-CNF form. To reduce SAT to 3SAT, we simply give a function $R: L_{\mathrm{bool}} \rightarrow L_{3 \mathrm{cnf}}$ such that $R(e) \in L_{3 \text { sat }}$ if and only if $e \in L_{\text {sat }}$.
Henceforth, a reduction of a problem will only be defined on instances of the problem. By the logic given above, that is sufficient if the set of instances of the problem is in \mathcal{P}, which is usually true in practice.
A language L is in the class \mathcal{P}-TIME (or simply \mathcal{P}) if there is some constant k and some machine M (A machine of any class: Turing machine, RAM, virtual C++ machine, or whatever.) which decides whether a given string w is a member of L, in at most n^{k} steps, where $n=|w|$.
A language L is in the class $\mathcal{N} \mathcal{P}$-Time (or simply $\mathcal{N} \mathcal{P}$) if there is some constant k and some non-deterministic machine M such that, given any string $w \in L$, there is a computation of M, with input w, which halts in at most n^{k} steps, where $n=|w|$, and such that, for any string $w \notin L$, there is no computation of M with input w which halts. Note that, since M is non-deterministic, there could be lots of computations of M with input w that do not halt, even if $w \in L$.

Verifier Definition of $\mathcal{N P}$

There is an equivalent definition of $\mathcal{N P}$ which is much easier to work with, the verifier definition, given below.
Let $L \subseteq \Sigma^{*}$ be a language. Then L is $\mathcal{N} \mathcal{P}$ if there is an integer k and a program V (called the verifier) such that

1. The input of V is an ordered pair of strings (w, c), and the output is the single symbol " 0 " or " 1 ."
2. Let $w \in \Sigma^{*}$, and let $n=|w|$. If $w \in L$, there is a string c called a certificate of w such that V halts with input (w, c) and outputs " 1 " within n^{k} steps.
3. For any string $w \notin L$, the output of V with input (w, c) is " 0 ." regardless of c.

Definition 1 We say that a language L_{1} is $\mathcal{N} \mathcal{P}$-complete if the following two conditions are satisfied:

1. $L_{1} \in \mathcal{N P}$
2. For any $L_{2} \in \mathcal{N} \mathcal{P}$, there exists a polynomial time reduction of L_{2} to L_{1}.

Theorem 1 If L_{1} is $\mathcal{N P}$-complete, $L_{2} \in \mathcal{N} \mathcal{P}$, and there is a polynomial time reduction of L_{1} to L_{2}, then L_{2} is $\mathcal{N} \mathcal{P}$-complete.

Proof: Condition 1 of the definition is given. To prove Condition 2, let $L_{3} \in \mathcal{N} \mathcal{P}$; We need to show that there is a polynomial time reduction R of L_{3} to L_{2}. Since L_{1} is $\mathcal{N} \mathcal{P}$-complete, there is a polynomial time reduction of L_{3} to L_{1}, and we are given a polynomial time reduction of L_{1} to L_{2}. Let R be the composition of those two reductions.

Theorem 2 If $L_{1} \in \mathcal{P}$ and L_{1} is $\mathcal{N P}$-complete, then $\mathcal{P}=\mathcal{N} \mathcal{P}$.
Proof: Trivially, $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$. We need only show that any $L_{2} \in \mathcal{N} \mathcal{P}$ is in \mathcal{P}.
Let $L_{2} \in \mathcal{N} \mathcal{P}$. Since $L_{1} \in \mathcal{P}$, there is a machine M_{1} that decides L in polynomial time. Since L_{1} is $\mathcal{N} \mathcal{P}$-complete, there is a polynomial time reduction of L_{2} to L_{1}, computed by some machine M_{2}. Connecting the input of M_{1} with the output of M_{2}, we obtain a machine that decides L_{2} in polynomial time. Thus, $L_{2} \in \mathcal{P}$.

Our List of $\mathcal{N} \mathcal{P}$-Complete Problems

We use Theorem 1 to "bootstrap" the list of $\mathcal{N} \mathcal{P}$-complete problems we discuss in this course.

- We have to start somewhere. SAT is proved to be $\mathcal{N} \mathcal{P}$-complete from first principles, without the use of Theorem 1. You can find the proof on various websites, but I won't give it in class. From then on, we use the Theorem.
- There is a reduction of SAT to 3 SAT. If E is a Boolean expression, construct a parse tree for E using a context-free grammar for $L_{\text {bool }}$. Then replace each internal node of that parse tree by a Boolean expression in 3CNF form according to certain rules. ${ }^{1}$ The conjunction of those expressions is a member of $L_{c n f t}$ which is satifiable if and only if E is satisfiable.
- We give a reduction of 3SAT to IND, the independent set problem, proving that IND is $\mathcal{N} \mathcal{P}$-complete.
- We give a reduction of IND to the subset sum problem, proving that the subset sum problem is $\mathcal{N} \mathcal{P}$-complete.
- We give a reduction of the subset sum problem to the partition problem, proving that the partition problem is $\mathcal{N} \mathcal{P}$-complete.

You can find massive lists of $\mathcal{N} \mathcal{P}$-complete problems on the internet. New ones are found frequently.

Boolean Satisfiability

Generally, we define a Boolean expression to be an expression involving variables and operators, where all variables have Boolean type and all operators have Boolean type. ${ }^{2}$ A satisfying assignment of a Boolean expression is an assignment of truth values (there are only two truth values, true and false) to each variable so that the value of the expression is true. If a Boolean expression has a satisfying assignment, we say it is satisfiable; otherwise, we say it is a contradiction. The Boolean satisfiability problem is whether a given boolean expression is satisfiable. This problem is $\mathcal{N} \mathcal{P}$-complete, and in fact is our "base" $\mathcal{N} \mathcal{P}$-complete problem, the one we shall use to determine that other problems are $\mathcal{N} \mathcal{P}$-complete.

Formal Definition of Boolean Satisfiability

We first define a context-free language $L_{\text {bool }}$ to consist of all boolean expressions using the following rules:

1. All variables are written in alphanumeric style, i.e., are strings containing letters and digits and starting with a letter.
2. The only operators permitted are
(a) " + " denoting or.
(b) "." denoting and.
(c) "!" denoting not.

[^0](d) "=" denoting if and only if.
(e) " \Rightarrow " denoting implies.

We apply the following precedence rules:
(a) "!" has precedence over all other operators.
(b) "." has precedence over all operators except "!"
(c) " + " has precedence over all operators except "!" and "."
(d) " \Rightarrow " has precedence over "="
(e) All binary operators are left-associative.

It is an easy exercise to design a context-free grammar for $L_{\text {bool }}$, using the alphabet consisting of the operator symbols listed above, letters and digits, and right and left parentheses.

Certificates for L_{sat} A certificate for any $w \in L_{\mathrm{sat}}$ is a satisfying assignment. For example, $x=1, y=0$ is a certificate for the boolean expression $(x+y) \cdot(!x+!y)$, while the boolean expression $(x!!x)$ has no certificate. Since a certificate for any $w \in L$ is no longer than w itself, and since it can be verified in linear time, we have an $\mathcal{N} \mathcal{P}$ certificate system for L_{sat}.

Conjunctive normal form. We say that $w \in L_{\mathrm{bool}}$ is in conjunctive normal form (abbreviated CNF) if it is the conjunction of clauses, where each clause is the disjunction of terms, and each term is either a variable or the negation of a variable.

Definition 2

1. $L_{\text {sat }}$ is the subset of L_{bool} consisting of all satisfiable boolean expressions.
2. $L_{3 \mathrm{cnf}}$ is the subset of L_{bool} consisting of all boolean expressions in conjunctive normal form where each clause has exactly three terms.
3. $L_{3 \mathrm{sat}}=L_{3 \mathrm{cnf}} \cap L_{\mathrm{sat}}$.

We give context-free grammars for both L_{bool} and $L_{3 \mathrm{cnf}}$.

Unambiguous Context-free grammar for $L_{\text {bool }}$

The start symbol is S.
$S \rightarrow E=E|E \Rightarrow E| E$
$E \rightarrow E+T \mid T$
$T \rightarrow T \cdot F \mid F$
$F \rightarrow!F|V|(S)$
$V \rightarrow A P$
$P \rightarrow A P|N P| \epsilon$
$A \rightarrow a|b| c|d| e|f| g|h| i|j| k|l| m|n| o|p| q|r| s|t| u|v| w|x| y \mid z$ $N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

Ambiguous Context-free grammar for $L_{\text {bool }}$

It is more practical to give an ambiguous grammar for $L_{\text {bool }}$, since parse trees are simpler. The start symbol of this grammar is E, for "expression." For simplicity, we use the symbol id to stand for any identifier.

$$
\begin{aligned}
& E \rightarrow E+E \\
& E \rightarrow E \cdot E \\
& E \rightarrow!E \\
& E \rightarrow E \Rightarrow E \\
& E \rightarrow E=E \\
& E \rightarrow(E) \\
& E \rightarrow \mathbf{i d}
\end{aligned}
$$

Unambiguous Context-free grammar for $L_{3 \mathrm{cnf}}$

The start symbol is E.
$E \rightarrow E \cdot C \mid C$
$C \rightarrow(T+T+T)$
$T \rightarrow!V \mid V$
$V \rightarrow A P$
$P \rightarrow A P|N P| \epsilon$
$A \rightarrow a|b| c|d| e|f| g|h| i|j| k|l| m|n| o|p| q|r| s|t| u|v| w|x| y \mid z$ $N \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

Theorem $3 L_{\text {sat }}$ is $\mathcal{N} \mathcal{P}$-complete.
The proof of Theorem 3 is long, but straightforward. I do not believe it to be a good idea to present it to the class, but you can read it in a number of places.

Theorem $4 L_{3 \text { sat }}$ is $\mathcal{N} \mathcal{P}$-complete.
Theorem 4 is proven by giving a polynomial time reduction of $L_{\text {sat }}$ to $L_{3 \text { sat }}$. We will not give the details of this reduction, but we discuss some of the issues.
Two Boolean expressions are usually said to be equal if they have the same variables and every assignment of those variables satisfies either both expressions or neither expression. For example, the expression $x \cdot(y+z)$ is equal to the expression $x \cdot y+x \cdot z$. It is impossible to find a reduction R of $L_{\text {sat }}$ to $L_{3 \text { sat }}$ which maps every boolean expression of $L_{\text {bool }}$ to an equal Boolean expression in $L_{3 \mathrm{cnf}}$. Our reduction must make use of new variables.
Clauses are not independent. For example, let E be the expression in 2-CNF form:

$$
(x+y) \cdot(x+!y) \cdot(!x+y) \cdot(!x+!y)
$$

Each of the four clauses is satisfiable. In fact, the conjunction of any three of those clauses is satisfiable. But E, the conjunction of all four clauses, is not satisfiable.
Let E_{1} be the Boolean expression $(x+y+z+w) \cdot F$, where F is satisfiable. Clearly $x+y+z+w$ is satisfiable, but E_{1} may not be. For example, x, y, z, and w could all appear somewhere in F, and it could be that the every satisfying assignment of F assigns false to
all four of those variables. We must find a Boolean expression E_{2} which is equivalent to E_{1} in a weaker way, namely that E_{2} is satisfiable if and only if E_{1} is satisfiable.
We use the a new variable which must have a name that does not appear in F. Let u be that new variable. Now let E_{2} be the Boolean expression $(x+y+u) \cdot(!u+z+w) \cdot F$. If F is 3 CNF , then E_{2} is 3 -CNF.
We see that E_{1} and E_{2} are not equal, because E_{2} has more variables that E_{1}, but they are equivalent in the weaker sense defined above: suppose I_{1} is satisfiable. Then there is an assignment of the variables of E_{1} such that at least one of the four variables x, y, z, and w is assigned true. The same assignment, augmented by an assignment of u, satisfies E_{2}. To prove this, we consider two cases.
Case I: Either x or y is assigned true. Then assign u the value false. The clause $(x+y+u)$ is true because x is true, while the clause $(!u+z+w)$ is true because u is false. The expression F is still true, since the assignments of its variables have not changed.
Case II: Either z or w is assigned true. Then assign u true, making the first clause true. The second clause is also true, and F is still true as before.
On the other hand, suppose E_{1} is a contradiction. Then x, y, z, and w must all be assigned false. Whatever the assignment of u, either the first or the second clause must be false, hence E_{2} is a contradiction.

Other $\mathcal{N} \mathcal{P}$-Complete Problems

The most common method of proving that a given problem (i.e., language) is $\mathcal{N} \mathcal{P}$-complete is to use Theorem 1, where L_{1} is taken to be a problem (i.e., language) already known to be $\mathcal{N} \mathcal{P}$-complete. The problem $L_{3 \text { sat }}$ is one of the more popular choices used for this purpose. ${ }^{3}$

The Independent Set Problem

Given a graph G and a number k, an independent set of G is defined to be a set \mathcal{I} of vertices of G such that no two members of \mathcal{I} are connected by an edge of G. The order of \mathcal{I} is defined to be its size, i.e.., simply how many vertices it contains.
An instance of the independent set problem is $\langle G\rangle\langle k\rangle$, where G is a graph and k is an integer. The question is, "Does G have an independent set of order k ?"

The language $L_{\text {ind }}$. We define $L_{\text {instance-ind }}=\{\langle G\rangle k\}$ to be the instances of the independent set problem, and $L_{\mathrm{ind}} \subseteq L_{\text {instance-ind }}$ the set of instances for which the graph G has an independent set k vertices.

Theorem $5 L_{\text {ind }}$ is $\mathcal{N P}$ complete.
Proof: For any $w \in L_{3 \mathrm{cnf}}$, we construct $R(w) \in L_{\text {instance-ind }}$ such that $w \in L_{3 \text { sat }}$ if and only if $R(w) \in L_{\text {ind }}$. Thus R is a reduction of 3SAT to IND.
Let $e \in L_{3 \mathrm{cnf}}$. Then $e=C_{1} \cdot C_{2} \cdots \cdot C_{k}$, where $C_{i}=\left(t_{i, 1}+t_{i, 2}+t_{i, 3}\right)$, where each $t_{i, j}$ is either x or $!x$, where x is a string which represents a variable.

[^1]We now define a graph $G[e]=(V, E)$, where $V=\left\{v_{i, j}: 1 \leq i \leq k, 1 \leq j \leq 3\right\}$ is the set of vertices of $G[e]$, and E the set of edges of $G[e]$, as follows:

1. For each $1 \leq i \leq k$, there is an edge from $v_{i, j}$ to $v_{i, j^{\prime}}$ for all $1 \leq j<j^{\prime} \leq 3$. Call these short edges.
2. If $t_{i, j}=x$ and $t_{i^{\prime}, j^{\prime}}=!x$ for some variable x, there is an edge from $v_{i, j}$ to $v_{i^{\prime}, j^{\prime}}$. Call these long edges.
3. There are no other edges.

Let $R(e)=G[e], k)$ We now show that $R(e) \in L_{\text {ind }}$ if and only if e is satisfiable. For each i, let K_{i} be the subgraph of $G[e]$ consisting of the three vertices $v_{i, 1}, v_{i, 2}, v_{i, 3}$, and the edges connecting them. We call this a 3 -clique.
Suppose $G[e], k \in L_{\text {ind }}$. Let $I \subset V$ be an independent set of of size k. Since K_{i} is a 3-clique, and the number of such cliques is equal to k, exactly one member of I must lie in each K_{i}. We define an assignment of e. If $v_{i, j} \in I$ and $t_{i, j}=x$ for some variable x, assign the value true to x, while if $t_{i, j}=!x$, assign false to x. Assign all remaining variables arbitrary Boolean values. This assignment is well-defined, for if $v_{i, j}, v_{i^{\prime}, j^{\prime}} \in I$ for $i \neq i^{\prime}$, there can be no edge between those two vertices, which implies that $t_{i, j}$ does not contradict $t_{i^{\prime}, j^{\prime}}$. Furthermore, each clause has one term which is assigned true, hence each clause is assigned true, and we thus the assignment is satisfying.
Conversely, suppose that there is a satisfying assignment of e. That means each clause C_{i} must contain one term, say $t_{i, j[i]}$ which is true under the assignment. Let $I=\left\{v_{i, j[i]}\right\} \subseteq V$. No two elements of I are in the same clique K_{i}, hence there is no short edge connecting them, and there can be no long edge connecting them because $v_{i, j[i]}$ and $v_{i^{\prime}, j\left[i^{\prime}\right]}$ are both assigned true and hence cannot contradict each other. Thus I is an independent set.

Example

A non-trivial example would have at least eight clauses, but I'll keep it simple. Let E be the 3CNF expression

$$
(x+y+z) \cdot(!x+!y+w) \cdot(y+!z+!w) \cdot(!y+z+!w)
$$

Then $k=4$. The following diagram illustrates $G[E]$. The vertices of I are circled in red. The satisfying assignment shown is $x=$ false, $y=$ true, $w=$ false, while z can be assigned either true or false.

The Subset Sum Problem

Informally, the subset sum problem is whether there is a subset of a given set of items whose total is a given number. Formally, an instance of the subset sum problem is a finite sequence $x_{1}, \ldots x_{k}$ of non-negative numbers and a single number B. This instance is a member of the language L_{SS} if there is some subsequence of $\left\{x_{i}\right\}$ whose sum is B.

Theorem 6 The subset sum problem is $\mathcal{N} \mathcal{P}$-complete.
Proof: Trivially, the subset sum problem satisfies the verifiability definition of $\mathcal{N P}$.
We reduce the independent set problem to the subset sum problem. Suppose $\langle G\rangle\langle k\rangle$ is an instance of the independent set problem, where G has n vertices and m edges. Let $e_{0}, \ldots e_{m-1}$ be the edges of G and $v_{m} \ldots v_{n+m-1}$ the vertices of G. Define $R(\langle G\rangle\langle k\rangle)$ to be the instance of the subset sum problem $w=\left(x_{0}, x_{1}, \ldots x_{n+m-1}, B\right)$ where

- $x_{i}=4^{i}$ for $0 \leq i<m$
- For $m \leq i<n+m$, let $J_{i}=\left\{j: v_{i}\right.$ is an endpoint of $\left.e_{j}\right\}$, then $x_{i}=4^{m}+\sum_{j \in J_{i}} 4^{j}$.
- $B=k 4^{m}+\sum_{0 \leq j<m} 4^{j}$

For $0 \leq j<m, x_{j}$ corresponds to the edge e_{j}, while for $m \leq i<m+n, x_{i}$ corresponds to the vertex v_{i}.
We need to prove R is a reduction of IND to Subset Sum. Suppose $I \subseteq V$ is an independent set of k vertices of G. Let

$$
S=\left\{x_{j}: 0 \leq j<m \text { and no endpoint of } e_{j} \text { is in } I\right\} \cup\left\{x_{i}: m \leq i<n+m \text { and } v_{i} \in I\right\}
$$

We need to show that $\sum S$, the sum of the members of S, equals B. Since $|I|=k$, the coefficient of 4^{m} is k. An e_{j} is adjacent to either just one member of I or none. If e_{j} is
adjacent to vertex $v_{i} \in I$, then the coefficient of 4^{j} in x_{i} is 1 , matching that of B. Otherwise, S contains x_{j}, which is simply 4^{j}, hence $\sum S=B$.
Conversely, suppose there is a subset S of the sequence whose sum is B. Let $I=\left\{v_{i}: x_{i} \in S\right\}$. Since the coefficient of 4^{m} in B is k, I must contain exactly k vertices. Since the coefficient of every x_{j} in B is 1 , no two members of the I can be adjacent, hence I is a solution to the subset sum problem.

Example

Let G be the graph shown below, and let $k=3$.

We show the reduced instance of the subset sum problem, where the x_{i} are written in base 4.

$$
\begin{array}{rlr}
x_{0} & = & 1 \\
x_{1} & = & 10 \\
x_{2} & = & 100 \\
x_{3} & = & 1000 \\
x_{4} & = & 10000 \\
x_{5} & = & 100000 \\
x_{6} & = & 1000000 \\
x_{7} & = & 10000000 \\
x_{8} & = & 100000000 \\
x_{9} & = & 1000000000 \\
x_{10} & = & 10000001101 \\
x_{11} & = & 10000110011 \\
x_{12} & = & 10001000010 \\
x_{13} & = & 10010000100 \\
x_{14} & = & 10110011000 \\
x_{15} & = & 11101100000 \\
x_{16} & = & 11000000000 \\
B & = & 31111111111
\end{array}
$$

The graph below shows an independent set I of vertices of order 3 , together with the set of edges which are not adjacent to members of I.

Finally, we show the members of the subsequence corresponding to the chosen vertices and edges.

$$
\begin{array}{rrr}
x_{0} & = & 1 \\
x_{2} & = & 100 \\
x_{5} & = & 100000 \\
x_{12} & = & 10001000010 \\
x_{14} & = & 10110011000 \\
x_{16} & = & 11000000000 \\
\hline B & = & 31111111111
\end{array}
$$

Subset Sum and Partition

The subset sum problem can be shown to be $\mathcal{N} \mathcal{P}$-complete by reducing IND to subset sum. We can then show that the partition problem is $\mathcal{N} \mathcal{P}$-complete by reducing Subset Sum to Partition.
Recall that an instance of the Subset Sum problem is a number followed by a sequence of positive numbers, followed by one number, K, that is, $\left(x_{1}, x_{2}, \ldots x_{m}, K\right)$, and that instance is in $L_{\text {subs }}$ if there is some subsequence of $x_{1}, \ldots x_{m}$ whose total is K. Let $L_{\text {subs }}$ be the language of all instances of the problem which have a solution.
Similarly, an instance of the Partition problem is a sequence of positive numbers, namely $\left\langle y_{1}, \ldots y_{\ell}\right\rangle$, and there is a solution to that instance if and only if there is some subsequence of $y_{1}, \ldots y_{\ell}$ whose sum is half the total, i.e. $\frac{1}{2} \sum_{j=1}^{\ell} y_{j}$. Let L_{part} be the language of all instances of the problem which have a solution.
The partition problem is trivially in the class $\mathcal{N} \mathcal{P}$, since the solution, if any, can be verified in polynomial time.

Reduction

Given an instance $I_{K}=\left(x_{1}, x_{2}, \ldots x_{m}, K\right)$ of Subset Sum, let $A=\sum_{i=1}^{m} x_{i}$. Let $R\left(I_{K}\right)=I_{P}$ be the following instance of Partition:

$$
I_{P}=\left(x_{1}, \ldots x_{m}, K+1, A-K+1\right)
$$

That is, $I_{P}=\left(y_{1}, \ldots y_{\ell}\right)$ where $\ell=m+2, y_{i}=x_{i}$ for $i \leq m, y_{m+1}=K+1$, and $y_{m+2}=A-K+1$.
We need to prove that this reduction works, that is, that $I_{P} \in L_{\mathrm{part}}$ if and only if $I_{K} \in L_{\text {subs }}$. There are thus two directions to the proof.

Note that the sum of the items of I_{P} is $2 A+2$, and half of that is $A+1$.
Suppose that $I_{K} \in L_{\text {subs. }}$. Then there is a subsequence of $\left\{x_{i}\right\}$ whose total is K. The items of this subsequence, together with $A-K+1$, total $A+1$, and thus $I_{P} \in L_{\mathrm{part}}$.
Conversely, suppose some subsequence S of $K+1, x_{1}, \ldots x_{m}, L+1$ has total $A+1$. That subsequence cannot contain both $K+1$ and $A-K+1$, since their total exceeds A +1 . Similarly, and by symmetry, S must contain either $K+1$ or $A-K+1$. Without loss of generality, S contains $A-K+1$. The remaining members of S constitute a subsequence of $x_{1}, \ldots x_{m}$ whose total is K, and we are done.
Conversely, suppose there is a subset B of $\left\{x_{i}\right\}$ whose total is K. Then $B \cup\{A-K+1\}$ is a subset of the sequence $\left\{y_{j}\right\}$ whose total is $A+1$, and we are done.

[^0]: ${ }^{1}$ Not given here.
 ${ }^{2}$ This definition is much more restrictive than the definition of a Boolean expression in a programming language, which could contain other things, such as the $C++$ expression " $n=5$ " where n is a variable of integer type.

[^1]: ${ }^{3}$ The precise definition of the problem described in this handout as $L_{3 \text { sat }}$ differs from book to book, but they are all equivalent.

