
Regular Languages

We will introduce a number of classes of languages. One of the simplest, and most important,
classes is the class of regular languages. Many classes are defined by the complexity of their
membership problems. A regular language is one whose membership problem can be decided by
a machine with finitely many states, meaning finite memory.

Abstract Machines

An abstract machine is a mathematical object. A physical machine, such as your laptop, can be
modeled by an abstract machine, but an abstract machine might not be equivalent to any physical
machine. In this course, all machines are abstract.

An abstract machine M has states and operates by steps. It can read input and write output. It
has an initial state. At each step, M

• reads input, which must be a finite (possibly empty) string over an alphabet Σ, the input
alphabet of M .

• changes state.

• writes output, which is a (possibly empty) string

• possibly halts.

We say a machine M accepts a language L is, given an input string w, M may eventually halt if
and only if w ∈ L.

We say a machine M decides a language L if, given an input string w, M always halts, and
outputs “1” if w ∈ L, and ”0” if w /∈ L.

A machine could have infinitely many states, sometimes called configurations. Some machines
have finitely many states: there are called finite automata. (Plural automata, singular outoma-
ton.)

A language is regular if and only if it is be decided by a finite automaton. It is also true that a
language is regular if and only if it is accepted by some finite automaton. This is because every
non-deterministic finite automaton, or NFA, is equivalent to some deterministic finite automaton,
or DFA.

In other words, the membership problem of L can be answered by a machine with only finite
memory.

Not Regular. Let L be the language of all strings over {a, b} which have equal numbers of each
symbol. For example, the empty string ε is a member of L, as are ab, ba, aabb, abab, abba. L is
infinite. How would you write a program to decide L? Your program would read a string w one
at a time, and would maintain a number m. Initially m = 0. e Each time M read an a, it would
increment m, and each time it read a b it would decrement m. When the input is fully processed,
M announces that w ∈ L if m = 0, and that w /∈ L if w 6= 0.

The problem is that the program would have to be able to store arbitrarily large integers. Since
m could have any length, storing m could overflow M ’s finite memory.

1

Example

q
0

q
2

q
1

q
3

a a
a

b

b b

a,b

This example illustrates a DFA, which we call M . M has four states, q0, q1, q2, and q3. At the
start of a computation, M is in the start state, q0. The input for a computation is a string w ∈ Σ∗,
where Σ = {a, b}. A step of M is defined as follows.

1. If the input file is empty, jump to step 4. otherwise, proceed to step 2.

2. Read the first symbol in the input, then proceed to step 3.

3. Move to a new state by following the arrow whose label is the symbol just read, then jump
to step 1.

4. If the current state is final (indicated by a double circle) halt and accept. (That is, output
“1.”) Otherwise, halt and reject. (That is, output “0.”)

M has a dead state, namely q3. If a computation reaches a dead state, the string will be rejected
regardless of the remaining symbols.

You can walk through a computation with a given input string. You can determine that M
accepts b, ab, aab, and abab. We write L(M) to mean the language accepted by M . Can you
describe L(M) in a few words?

Two machines M1 and M2 are equivalent if L(M1) = L(M2). Can you find a DFA with fewer
states that is equivalent to M?

Operations on Languages

Operations on languages include union, intersection, concatenation, Kleene closure, complemen-
tation, and homomorphism. You already know about union and intersection; remember that a
language is a set. However, we frequently write union of languages with “+” rather than “∪”

Concatenation. If u and v are strings, we write uv to indicate concatenation. For example, if
u = abaa and v = ba, then uv = abaaba.

If L1 and L2 are languages, we write L1L2 for the concatenation of those languages, defined to
be the set of all concatenations of a member of L1 with a member of L2.

For example, let L1 = {a, ba, bab} and L2 = a, b, bb. Then L1L2 = {aa, ab, abb, baa, bab, babb, baba, babbb}.

We let L2 be the concatenation LL. We define L3, L4, similarly.

2

Questions

1. Since |L1| = |L2| = 3, we would expect that |L1L2| = 9. But it’s only 8. Why?

2. Recall that ∅ is the empty language. If L is some language, what is the concatenation ∅L?

3. Let L1 = {λ}. the language consisting of only the empty string. If L2 is some other language,
what is the concatenation L1L2?

4. Given two languages L1 and L2, is the equation L1L2 = L2L1 always true?

5. What is L0?

6. Is the equation L1(L2 + L3) = SL1L2 + L1L3) always true?

Kleene Closure If L is any language, L∗ is the Kleene closure of L defined to be the set of all
strings which are formed by concatenation of any number of copies of members of L in any order.
We can also write L∗ = L0 + L1 + L2 + L3 + · · · Fore example, if L+ {a, ab} then L∗ is infinite,
but the first few members are {λ, a, aa, ab, aaa, aab, aba, aaab, aaba, abaa, abab, . . .}

Complementation

If Σ is the alphabet of L, we define the complement of L to be {w ∈ Σ∗ : w /∈ L}.

Questions

1. What is ∅∗, the Kleene closure of the empty language?

2. What is L∗∗?

3. Is the union of two regular languages always regular?

4. Is the intersection of two regular languages always regular?

5. Is the complement of a regular language always regular?

6. Is the Kleene closure of a regular language always regular?

Regular Expressions. Given any alphabet Σ, the set of regular expressions over Σ is a context-
free language, but not a regular language. In fact, it is an algebraic language, where the operators
are union, concatenation, and Kleene closure. If Σ = {a, b}, the alphabet of the language of
regular exprssions over Σ is {a, b, ∅, λ,+,∗ , (,)}. The concatenation operator is indicated by
concatenation. Each regular expression describes a regular language. Examples:

1. ∅ means the empty language.

2. a means the language {a}

3. λ means the language {λ}

4. a+ b means the language {a, b}.

5. a(a+ b) means the language {aa, ab}.

6. a∗ means the language {λ, a, aa, aaa, . . .}.

7. What is (a+ λ)b?

8. Is it true that (a+ b)∗ = a∗ + b∗?

3

Another Language for Regular Expressions

PYTHON has built-functions for analyzing regular expressions, but they

are written in different language.

Example in Python:

import re

regex = re.compile(’^([0-9][0-9]:[0-9][0-9]).* \(([a-zA-Z0-9_]*)\)

.*\[sessid: (.*?)\].* (GET|POST) (.*)$’)

For example: [0-9][0-9]:[0-9][0-9] is a time.

4

