CSC 456/656 Fall 2022 Answers to First Examination September

28, 2022

The entire test is 230 points.
In the questions of this test, \mathcal{P} and $\mathcal{N} \mathcal{P}$ denote \mathcal{P}-time and $\mathcal{N} \mathcal{P}$-Time, respectively.
If L is a language over an alphabet Σ, we define the complement of L to be the set of all strings over Σ which are not in L. If \mathcal{C} is a class of languages, we define co- \mathcal{C} to be the class of all complements of members of \mathcal{C}.

1. True or False. 5 points each. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time.
(i) \mathbf{F} Every subset of a regular language is regular.

Every language is a subset of a regular language.
(ii) \mathbf{F} Context-free grammar equivalence is decidable.

However, it is co-RE.
(iii) \mathbf{T} Regular grammar equivalence is decidable.
(iv) \mathbf{T} The class of regular languages is closed under intersection.
(v) T The class of regular languages is closed under Kleene closure.
(vi) \mathbf{T} The class of context-free languages is closed under union.
(vii) \mathbf{F} The class of context-free languages is closed under intersection.
$\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is the intersection of two context-free languages, but is not context-free.
(viii) \mathbf{F} The set of binary numerals for prime numbers is a regular language.

Well, you should be aware that this is considered to be a very hard problem, although it was (finally) proved to be \mathcal{P}-TIME recently. If the language were regular, there would be a fast algorithm to decide primality. (This is not really a proof, just a "convince.")
(ix) \mathbf{T} If a language L is accepted by some PDA, then L must be generated by some context-free grammar.
Well-known theorem. I haven't proved it in class, since it would take more than one lecture.
(x) \mathbf{F} Every PDA is equivalent to some DPDA.

The language of palindromes over $\{a, b\}$ is context-free, hence accepted by some DFA, but is not accepted by any DPDA.
(xi) \mathbf{F} If L has an unambiguous CF grammar, then there must be a DPDA which accepts L.

The language of palindromes over $\{a, b\}$ has an unambiguous CF grammar:
$S \rightarrow a|b| \lambda|a S a| b S b$ but is not accepted by any DPDA.
(xii) \mathbf{T} If Σ is the binary alphabet, Σ^{*} is countable.

Every language is countable.
(xiii) \mathbf{F} If Σ is the binary alphabet, the set of languages over Σ is countable.

The set of languages over Σ is equal to the set of subsets of Σ^{*}. Since Σ^{*} is infinite, $2^{\Sigma^{*}}$ is uncountable.
(xiv) $\mathbf{O} \mathcal{P}=\mathcal{N} \mathcal{P}$. The most famous open problem in computer science.
2. [10 points] Name a problem which is known to be $\mathcal{N} \mathcal{P}$ and is also known to be co- $\mathcal{N} \mathcal{P}$, but is not known to be \mathcal{P}.
There could be many, but the only one I've told you about is factoring a binary numeral.
3. [10 points] Suppose L is a problem such that you can check any suggested solution in polynomial time. Which one of these statements is certainly true?
(i) L is \mathcal{P}.
(ii) L is $\mathcal{N P}$.
(iii) L is $\mathcal{N} \mathcal{P}$-complete.
$\mathcal{N} \mathcal{P}$. Verifiability in \mathcal{P} time is the alternative definition of $\mathcal{N} \mathcal{P}$. Whether either of the other two answers is correct is unknown. Since I used the word "certainly," the middle choice is the only correct choice.
4. [20 points] Let L be the language of all binary strings encoding numbers which are equivalent to 1 modulo 3 , where leading zeros are allowed. Thus, $L=\{1,01,001,100,111,0100,0111,1010, \ldots\}$. Draw a DFA which accepts L. (You need only three states.)

5. [20 points] Consider the NFA M pictured below.

Construct a minimal DFA equivalent to M.

6. [20 points] Let G be the CF grammar given below. Show that G is ambiguous by giving two different rightmost derivations for the string iiwaea.

1. $S \rightarrow a$
2. $S \rightarrow w S$
3. $S \rightarrow i S$
4. $S \rightarrow i S e S$
$S \Rightarrow i S \Rightarrow i i S e S \Rightarrow i i S e a \Rightarrow i i w S e a \Rightarrow i i w a e a$
$S \Rightarrow i S e S \Rightarrow i S e a \Rightarrow i i S e a \Rightarrow i i w S e a \Rightarrow$ iiwaea
5. [20 points] Give a regular grammar for the language accepted by the follwing NFA.

We will let G have four variables, S, A, B, and C, corresponding to the four states, q_{1}, q_{2}, q_{3}, and q_{4}.
$S \rightarrow a S$
$S \rightarrow a A$
$S \rightarrow b A$
$S \rightarrow a B$
$S \rightarrow b B$
$A \rightarrow b C$
$A \rightarrow a A$
$B \rightarrow a A$
$B \rightarrow a B$
$B \rightarrow b C$
$C \rightarrow a B$
$C \rightarrow b S$
$C \rightarrow \lambda$
8. [20 points] Give a regular expression for the language accepted by the following NFA

The first part gives a direct path to the final state, while the second part gives all loops based at the final state.
$(a+b)\left(b(a+b)+a+b a^{*} b\right)^{*}$
9. [20 points] State the pumping lemma for regular languages correctly. Pay close attention to the order in which you write the quantifiers. If you have all the correct words in the wrong order, you still might get no credit.

Lemma 1 (Pumping Lemma for Regular Languages) If L is a regular language, there exists a positive integer p, called the pumping length of L, such that for any string $w \in L$ whose length is at least p, there exist strings x, y, z such that the following conditions hold.
(i) $w=x y z$
(ii) $|y| \geq 1$
(iii) $|x y| \leq p$
(iv) for any $i \geq 0, x y^{i} z \in L$.
10. [20 points] Let L be the language over $\{a, b\}$ generated by the following context-free grammar:
$S \rightarrow a S b S$
$S \rightarrow \lambda$
Design a PDA which accepts L. Note that L is just the Dyck language, where a and b are used instead of left and right parentheses. That is, each member of L is a string which has the same number of a 's as b 's, each prefix of which has at least as many a 's as b 's. That is, $L=\{\lambda, a b, a a b b, a b a b, a a a b b b, a a b a b b, a b a a b b, \ldots\}$

