CSC 456/656 Fall 2022 Topics for Second Examination

This is the corrected version, Mon Oct 24 15:45:26 PDT 2022. If you find any other errors, send me email immediately.

1. Classes and Operators. True/False/Open.
(i) __ The complement of any regular language is regular.
(ii) __ The complement of any context-free language is context-free.
(iii) The complement of any \mathcal{P}-TIME language is \mathcal{P}-TIME.
(iv) The complement of any $\mathcal{N} \mathcal{P}$ language is $\mathcal{N} \mathcal{P}$.
(v) _ The complement of any decidable language is decidable.
(vi) __ The complement of any RE language is RE.
(vii) _ The union of any two regular languages is regular.
(viii) __ The union of any two context-free languages is context-free.
(ix) _The union of any two \mathcal{P}-Time languages is \mathcal{P}-Time
(x) The union of any two $\mathcal{N P}$ languages is $\mathcal{N P}$.
(xi) __ The union of any two decidable languages is decidable.
(xii) The union of any two RE languages is RE.
(xiii) The intersection of any two regular languages is regular.
(xiv) __ The intersection of any two context-free languages is context-free.
(xv) The intersection of any two $\mathcal{N} \mathcal{P}$ languages is $\mathcal{N} \mathcal{P}$.
(xvi) _ The intersection of any two decidable languages is decidable.
(xvii) _ The intersection of any two RE languages is RE.
(xviii) _ The Kleene closure of any regular language is regular.
(xix) __ The Kleene closure of any context-free language is context-free.
(xx) _ The Kleene closure of any \mathcal{P}-Time language is \mathcal{P}-Time.
(xxi) _ The Kleene closure of any $\mathcal{N} \mathcal{P}$ language is $\mathcal{N} \mathcal{P}$.
(xxii) _ The Kleene closure of any decidable language is decidable.
(xxiii) __ The Kleene closure of any RE language is RE.

2. Definitions

(i) A language is regular if it is accepted by a finite state machine. Equivalently, a language is regular if it is described by a regular expression. Equivalently, a language is regular if it is generated by a regular grammar.
(ii) A language is context-free if it is accepted by a PDA. Equivalently, a language is context-free if it is generated by a context-free grammar.
(iii) A language is \mathcal{P}-TIME if it can be decided by some machine in time which is polynomial in the length of the input string.
(iv) A language is $\mathcal{N} \mathcal{P}$ if it is accepted by a non-deterministic machine, in time which is polynomial in the length of the input string provided the machine makes all the correct guesses. Equivalently, a language is $\mathcal{N \mathcal { P }}$ time if it is accepted in polynomial time be a non-deterministic machine if the machine is provided with a polynomial length guide string for each member of the language.
(v) A language L is $\mathcal{N} \mathcal{P}$-complete if there is a polynomial time reduction of any given $\mathcal{N} \mathcal{P}$ language to L.
(vi) A language is decidable, or recursive, if it is decided by some machine. Equivalently, a language is recursive if there is a machine that enumerates the language in canonical order.
(vii) A language is RE if there is a machine which enumerates the language. Equivalently, a language is $R E$ if there is some machine which accepts the language.
(viii) A language is co-RE if its complement is RE.
(ix) A function f is recursive if there is a machine which computes f.
(x) A real number x is recursive if there is a machine which runs forever, writing the decimal expansion of x. Equivalently, x is recursive if there is a machine which, given an integer i, computes the digit in the $i^{\text {th }}$ place of the decimal expansion of x. Equivalently, x is recursive if there is a machine which can decide whether a given rational number is less than x.
(xi) If L_{1} and L_{2} are languages over alphabets Σ_{1} and Σ_{2}, respetively, a reduction of L_{1} to L_{2} is a function $R: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that for any $w \in \Sigma_{1}^{*}, w \in L_{1}$ if and only if $R(w) \in L_{2}$.
3. Countability True/False/Open.
(i) The set of integers is countable.
(ii) __ The set of rational numbers is countable.
(iii) __ The set of real numbers is countable.
(iv) The set of recursive real numbers is countable.
(v) __ The set of functions from integers to integers is countable.
(vi) The set of recursive functions from integers to integers is countable.
(vii) _ Every language is countable.
(viii) __ Every recursive language is countable.
(ix) _ The set of languages over the binary alphabet is countable.
(x) __ The set of decidable languages over the binary alphabet is countable.
(xi) __ The set of RE languages over the binary alphabet is countable.
4. Other True/False/Open Questions.
(i) __ If a language is both $\mathcal{N} \mathcal{P}$ and $\cos -\mathcal{N} \mathcal{P}$, it must be \mathcal{P}-Time.
(ii) __ If a language is both RE and co-RE, it must be decidable.
(iii) (Hard!) Let L be any RE language over an alphabet Σ, and let M be a machine that accepts L. For any $w \in L$, let $T(w)$ be the number of steps M takes to accept w. For any integer $n \geq 0$, let $F(n)=\max \{T(w): w \in L$ and $|w|=n\}$. Then F must be a recursive function.
5. List six languages or problems known to be $\mathcal{N} \mathcal{P}$-complete.
6. Give a polynomial time reduction of 3SAT to the independent set problem.
7. Give a polynomial time reduction the subset sum problem to partition.
8. Let L be a decidable. Write a program which enumerates L in canonical order.
9. Know what a guide string is.
10. State the pumping lemma for context-free languages.
11. Give an example of a language which is context-sensitive, but not context-free.
12. Let G be the CF grammar given below, with start symbol E, which stands for expression. Consider the LALR parser given for G.
(i) Which entries show that addition and subtraction are left associative and have equal precedence?
(ii) Which entry shows that negation has precedence over multiplication?
(iii) Walk through the computation of the LALR parser if the input string is $x-(x+x)$
(iv) Walk through the compuation of the parser if the input string is $-x * x$

1. $E \rightarrow E+{ }_{2} E_{3}$
2. $E \rightarrow E-{ }_{4} E_{5}$
3. $E \rightarrow E *_{6} E_{7}$
4. $E \rightarrow-{ }_{8} E_{9}$
5. $E \rightarrow\left({ }_{10} E_{11}\right)_{12}$
6. $E \rightarrow x_{13}$

ACTION			
x + - $*$ $($ $)$ $\$$ E 0 $s 13$ $s 8$ $s 10$ 1 1 $s 2$ $s 4$ $s 6$ HALT 2 $s 13$ $s 8$ $s 10$ 3 3 $r 1$ $r 1$ $s 6$ $r 1$ $r 1$ 4 $s 13$ $s 8$ $s 10$ 5 5 $r 2$ $r 2$ $s 6$ $r 2$ $r 2$ 6 $s 13$ $s 8$ $s 10$ 7 7 $r 3$ $r 3$ $r 3$ $r 3$ $r 3$ 8 $s 13$ $s 8$ $s 10$ 9 9 $r 4$ $r 4$ $r 4$ $r 4$ $r 4$ 10 $s 13$ $s 8$ $s 10$ 11 11 $s 2$ $s 4$ $s 6$ $s 12$ 12 $r 5$ $r 5$ $r 5$ $r 5$ $r 5$ 13 $r 6$ $r 6$ $r 6$ $r 6$ $r 6$			

13. Let G be the CF grammar given below, with start symbol S, which stands for statement. Another variable of the grammar is L, which stands for list of statements. Consider the LALR parser given for G.
(i) Walk through the computation of the parser if the input string is $i\{i a e a a\}$.

Note corrected production 6.

1. $S \rightarrow i_{2} S_{3}$
2. $S \rightarrow i_{2} S_{3} e_{4} S_{5}$
3. $S \rightarrow a_{6}$
4. $S \rightarrow\left\{{ }_{7} L_{8}\right\}_{9}$
5. $L \rightarrow L_{8} S_{10}$
6. $L \rightarrow \lambda$

ACTION							GOTO	
	a	i	e	\{	\}	\$	S	L
0	s6	$s 2$		$s 7$			1	
1						HALT		
2	$s 6$	$s 2$		$s 7$			3	
3	$r 1$	$r 1$	$s 4$	$r 1$	$r 1$	$r 1$		
4	$s 6$	$s 2$		$s 7$			5	
5	$r 2$							
6	$r 3$							
7	$r 6$	$r 6$		$r 6$	$r 6$			8
8	s6	$s 2$		$s 7$	$s 9$		10	
9	$r 4$							
10	$r 5$		$r 5$	$r 5$	$r 5$	$r 5$		

