CSC 456/656 Fall 2022 Answers for Topics for Second Examination

This is the **corrected** version, **Tue Oct 25 12:54:27 PDT 2022** If you find any other errors, send me email **immediately**.

- 1. Classes and Operators. True/False/Open.
 - (i) **T** The complement of any regular language is regular.
 - (ii) **F** The complement of any context-free language is context-free.
 - (iii) **T** The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (iv) **T** The complement of any \mathcal{NP} language is \mathcal{NP} .
 - (v) **T** The complement of any decidable language is decidable.
 - (vi) **F** The complement of any RE language is RE.
 - (vii) \mathbf{T} The union of any two regular languages is regular.
 - (viii) **T** The union of any two context-free languages is context-free.
 - (ix) **T** The union of any two \mathcal{P} -TIME languages is \mathcal{P} -TIME
 - (x) **T** The union of any two \mathcal{NP} languages is \mathcal{NP} .
 - (xi) **T** The union of any two decidable languages is decidable.
 - (xii) **T** The union of any two RE languages is RE.
 - (xiii) \mathbf{T} The intersection of any two regular languages is regular.
 - (xiv) **F** The intersection of any two context-free languages is context-free.
 - (xv) **T** The intersection of any two \mathcal{NP} languages is \mathcal{NP} .
 - (xvi) \mathbf{T} The intersection of any two decidable languages is decidable.
 - (xvii) **T** The intersection of any two RE languages is RE.
 - (xviii) **T** The Kleene closure of any regular language is regular.
 - (xix) T The Kleene closure of any context-free language is context-free.
 - (xx) **T** The Kleene closure of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (xxi) **T** The Kleene closure of any \mathcal{NP} language is \mathcal{NP} .
 - (xxii) **T** The Kleene closure of any decidable language is decidable.
 - (xxiii) **T** The Kleene closure of any RE language is RE.

2. Definitions

(i) A language is *regular* if it is accepted by a finite state machine. Equivalently, a language is *regular* if it is described by a regular expression. Equivalently, a language is *regular* if it is generated by a regular grammar.

 \mathbf{x}

- (ii) A language is *context-free* if it is accepted by a PDA. Equivalently, a language is *context-free* if it is generated by a context-free grammar.
- (iii) A language is \mathcal{P} -TIME if it can be decided by some machine in time which is polynomial in the length of the input string.
- (iv) A language is \mathcal{NP} if it is accepted by a non-deterministic machine, in time which is polynomial in the length of the input string provided the machine makes all the correct guesses. Equivalently, a language is \mathcal{NP} time if it is accepted in polynomial time be a non-deterministic machine if the machine is provided with a polynomial length guide string for each member of the language.
- (v) A language L is \mathcal{NP} -complete if there is a polynomial time reduction of any given \mathcal{NP} language to L.
- (vi) A language is decidable, or recursive, if it is decided by some machine. Equivalently, a language is recursive if there is a machine that enumerates the language in canonical order.
- (vii) A language is RE if there is a machine which enumerates the language. Equivalently, a language is RE if there is some machine which accepts the language.
- (viii) A language is co-RE if its complement is RE.
- (ix) A function f is recursive if there is a machine which computes f.
- (x) A real number x is recursive if there is a machine which runs forever, writing the decimal expansion of x. Equivalently, x is recursive if there is a machine which, given an integer i, computes the digit in the i^{th} place of the decimal expansion of x. Equivalently, x is recursive if there is a machine which can decide whether a given rational number is less than x.
- (xi) If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2 , respectively, a reduction of L_1 to L_2 is a function $R: \Sigma_1^* \to \Sigma_2^*$ such that for any $w \in \Sigma_1^*$, $w \in L_1$ if and only if $R(w) \in L_2$.

3. Countability True/False/Open.

- (i) **T** The set of integers is countable.
- (ii) **T** The set of rational numbers is countable.
- (iii) **F** The set of real numbers is countable.
- (iv) \mathbf{T} The set of recursive real numbers is countable.
- (v) **F** The set of functions from integers to integers is countable.
- (vi) **T** The set of recursive functions from integers to integers is countable.
- (vii) **T** Every language is countable.
- (viii) **T** Every recursive language is countable.
- (ix) **F** The set of languages over the binary alphabet is countable.
- (x) **T** The set of decidable languages over the binary alphabet is countable.
- (xi) **T** The set of RE languages over the binary alphabet is countable.
- 4. Other True/False/Open Questions.
 - (i) **O** If a language is both \mathcal{NP} and co- \mathcal{NP} , it must be \mathcal{P} -TIME.
 - (ii) **T** If a language is both RE and co-RE, it must be decidable.

- (iii) **F** (Hard!) Let *L* be any RE language over an alphabet Σ , and let *M* be a machine that accepts *L*. For any $w \in L$, let T(w) be the number of steps *M* takes to accept *w*. For any integer $n \ge 0$, let $F(n) = \max \{T(w) : w \in L \text{ and } |w| = n\}$. Then *F* must be a recursive function.
- 5. List six languages or problems known to be \mathcal{NP} -complete.
- 6. Give a polynomial time reduction of 3SAT to the independent set problem.
- 7. Give a polynomial time reduction the subset sum problem to partition.
- 8. Let L be a decidable. Write a program which enumerates L in canonical order.
- 9. Know what a guide string is.
- 10. State the pumping lemma for context-free languages.
- 11. Give an example of a language which is context-sensitive, but not context-free.
- 12. Let G be the CF grammar given below, with start symbol E, which stands for **expression**. Consider the LALR parser given for G.
 - (i) Which entries show that addition and subtraction are left associative and have equal precedence? Ans: Rows 3 and 5, columns + and -.
 - (ii) Which entry shows that negation has precedence over multiplication? Ans: Row 9, column *.
 - (iii) Walk through the computation of the LALR parser if the input string is x (x + x)
 - (iv) Walk through the computation of the parser if the input string is -x * x

1.	$E \to E +_2 E_3$
2.	$E \rightarrow E4 E_5$
3.	$E \to E *_6 E_7$
4.	$E \rightarrow - {}_{8}E_{9}$
5.	$E \to ({}_{10}E_{11})_{12}$
6.	$E \to x_{13}$

AC	ΓΙΟΝ							GOT	0
	x	+	_	*	()	\$	E	
0	s13		s8		<i>s</i> 10			1	
1		<i>s</i> 2	<i>s</i> 4	<i>s</i> 6			HALT		
2	<i>s</i> 13		s8		<i>s</i> 10			3	
3		r1	r1	<i>s</i> 6		r1	r1		
4	s13		s8		<i>s</i> 10			5	
5		r2	r2	<i>s</i> 6		r2	r2		
6	<i>s</i> 13		<i>s</i> 8		<i>s</i> 10			7	
7		r3	r3	r3		r3	r3		
8	<i>s</i> 13		s8		<i>s</i> 10			9	
9		r4	r4	r4		r4	r4		
10	s13		s8		<i>s</i> 10			11	
11		<i>s</i> 2	<i>s</i> 4	<i>s</i> 6		<i>s</i> 12			
12		r5	r5	r5		r5	r5		
13		r6	r6	r6		r6	r6		ļ

stack		input	action	output					
0	:	x - (x + x)\$							
$_{0}x_{13}$:	-(x+x)\$	shift 13		stack		input	action	outpu
$_{0}E_{1}$:	-(x+x)\$	reduce 6	6			-	action	outpu
$_{0}E_{1}{4}$:	(x+x)\$	shift 4	6	0	:	-x * x\$	1.00	
$_{0}E_{1}{4} (_{10}$:	(x+x)	shift 10	6	0 8	:	x * x	shift 8	
$_{0}E_{1}{4}(_{10}x_{13})$:	+x)\$	shift 13	6	$_08 x_{13}$:	*x\$	shift 13	
$_{0}E_{1}{4}(_{10}E_{5})$:	+x)\$	reduce 6	66	$_{0}{8} E_{9}$:	*x\$	reduce 6	6
${}_{0}E_{1} - {}_{4}({}_{10}E_{5} + {}_{2}$		(x)	shift 2	66	$_{0}E_{1}$:	*x\$	reduce 4	64
${}_{0}E_{1} - {}_{4}({}_{10}E_{5} + {}_{2})$ ${}_{0}E_{1} - {}_{4}({}_{10}E_{5} + {}_{2}x_{13})$:	∞)\$)\$	shift 13	66	$_{0}E_{1}*_{6}$:	x	shift 6	64
${}_{0}E_{1} - {}_{4}\left({}_{10}E_{5} + {}_{2}E_{13}\right)$ ${}_{0}E_{1} - {}_{4}\left({}_{10}E_{5} + {}_{2}E_{3}\right)$:)\$	reduce 6	666	$_{0}E_{1} *_{6} x_{13}$:	\$	shift 13	64
		· · · · · · · · · · · · · · · · · · ·			$_{0}E_{1} *_{6} E_{7}$:	\$	reduce 6	646
$_{0}E_{1}{4}(_{10}E_{5} + _{2}E_{3})_{11}$:	\$	shift 11	666	$_{0}E_{1}$:	\$	reduce 3	6463
$_{0}E_{1}{4}(_{10}E_{5})_{11}$:	\$	reduce 1	6661	$_{0}E_{1}$:	\$	HALT	6463
$_{0}E_{1}{4}E_{5}$:	\$	reduce 5	66615	0-1		Ť		
$_{0}E_{1}$:	\$	reduce 2	666152					
$_{0}E_{1}$:	\$	halt	666152					

- 13. Let G be the CF grammar given below, with start symbol S, which stands for statement. Another variable of the grammar is L, which stands for *list of statements*. Consider the LALR parser given for G.
 - (i) Walk through the computation of the parser if the input string is $i\{iaeaa\}$.

Note corrected production 6.

1.	$S \rightarrow i_2 S_3$
2.	$S \rightarrow i_2 S_3 e_4 S_5$
3.	$S \rightarrow a_6$
4.	$S \to \{_7L_8\}_9$
5.	$L \rightarrow L_8 S_{10}$
6.	$L \rightarrow \lambda$

AC	TION	V					GO	ТО
	a	i	e	{	}	\$	S	L
0	<i>s</i> 6	<i>s</i> 2		s7			1	
1						HALT		
2	s6	<i>s</i> 2		s7			3	
3	r1	r1	<i>s</i> 4	r1	r1	r1		
4	s6	<i>s</i> 2		s7			5	
5	r2	r2	r2	r2	r2	r2		
6	r3	r3	r3	r3	r3	r3		
7	r6	r6		r6	r6			8
8	s6	s2		s7	s9		10	
9	r4	r4	r4	r4	r4	r4		
10	r5		r5	r5	r5	r5		

stack		input	action	output
0	:	$i\{iaeaa\}\$$		
$_{0}i_{2}$:	${iaeaa}$ \$	shift 2	
$_{0}i_{2}\{$ 7	:	$iaeaa \}$ \$	shift 7	
$_{0}i_{2}\{_{7}L_{8}$:	$iaeaa\}$ \$	reduce 6	6
$_{0}i_{2}\{_{7}L_{8}i_{2}$:	$aeaa\}$ \$	shift 2	6
$_{0}i_{2}\{_{7}L_{8}i_{2}a_{6}$:	$eaa \}$ \$	shift 6	6
$_{0}i_{2}\{_{7}L_{8}i_{2}S_{3}$:	$eaa \}$ \$	reduce 3	63
$_{0}i_{2}\{_{7}L_{8}i_{2}S_{3}e_{4}$:	aa }\$	shift 4	63
$_{0}i_{2}\{_{7}L_{8}i_{2}S_{3}e_{4}a_{6}$:	a	shift 6	63
$_{0}i_{2}\{_{7}L_{8}i_{2}S_{3}e_{4}S_{5}$:	a	reduce 3	633
$_{0}i_{2}\{_{7}L_{8}S_{10}$:	a	reduce 2	6332
$_{0}i_{2}\{_{7}L_{8}$:	a	reduce 5	63325
$_{0}i_{2}\{_{7}L_{8}a_{6}$:	}\$	shift 6	63325
$_{0}i_{2}\{_{7}L_{8}S_{10}$:	}\$	reduce 3	633253
$_{0}i_{2}\{_{7}L_{8}$:	}\$	reduce 5	6332535
$_{0}i_{2}\{_{7}L_{8}\}_{9}$:	\$	shift 9	6332535
$_{0}i_{2}S_{3}$:	\$	reduce 4	63325354
$_{0}S_{1}$:	\$	reduce 1	633253541
$_{0}S_{1}$:	\$	HALT	633253541