1. Identify which machine accepts the language defined by each regular expression.

 (a) $a^* + b^*$
 (b) λ
 (c) a^*
 (d) \emptyset
 (e) $a(aa + b)^*$
 (f) a^*b^*
 (g) $(a + b)^*$
 (h) $(ab)^*$

2. True or False.

 (a) ________ If L is any language, $L + L = L$
 (b) ________ If L is any language, $L \cap L = L$
 (c) ________ If L is any language, $\{\lambda\} \in L^*$.
3. Let $L_1 = \{a, ab\}$ and $L_2 = \{a, ba\}$. How many strings are there in the language L_1L_2?

4. True or False. These are harder.

 (a) ______ Any language consisting of all decimal numerals of an arithmetic sequence (for example: $\{5, 13, 21, 29, \ldots\}$) is regular.

 (b) ______ Let L be a regular binary language. Let L' be the language of all strings obtained from members of L by substituting ab for 0 and c for 1. Then L' must be regular. For example, if $L = \{0, 10, 10011\}$ then $L' = \{ab, cab, cababcc\}$.

5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state.

 Draw a DFA equivalent to the following three state NFA.

 ![Diagram of NFA and DFA](image-url)