University of Nevada, Las Vegas Computer Science 456/656 Fall 2023 Assignment 2: Due Friday September 8, 2023, 11:59 PM

Namo		
- 10111C	 	

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduage assistant, Sepideh Farivar, telling you how to turn in the assignment.

- 1. Identify which machine accepts the language defined by each regular expression.
 - (a) $a^* + b^*$
 - (b) λ
 - (c) a^*
 - (d) ∅
 - (e) $a(aa + b)^*$
 - (f) a^*b^*
 - (g) $(a+b)^*$
 - (h) $(ab)^*$

- 2. True or False.
 - (a) _____ If L is any language, L + L = L
 - (b) _____ If L is any language, $L \cap L = L$
 - (c) _____ If L is any language, $\{\lambda\} \in L^*$.

- 3. Let $L_1 = \{a, ab\}$ and $L_2 = \{a, ba\}$. How many strings are there in the language L_1L_2 ?
- 4. True or False. These are harder.
 - (a) _____ Any language consisting of all decimal numerals of an arithmetic sequence (for example: $\{5, 13, 21, 29, \ldots\}$) is regular.
 - (b) ______ Let L be a regular binary language. Let L' be the language of all strings obtained from members of L by substituting ab for 0 and c for 1. Then L' must be regular. For example, if $L = \{0, 10, 10011\}$ then $L' = \{ab, cab, cababcc\}$.
- 5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw a DFA equivalent to the following three state NFA.

