University of Nevada, Las Vegas Computer Science 456/656 Fall 2023

Answers to Assignment 2: Due September 8, 2023

1. Identify which machine accepts the language defined by each regular expression.

(a) $a^* + b^*$ Ans: M_7
(b) λ Ans: M_2
(c) a^* Ans: M_3
(d) \emptyset Ans: M_1
(e) $a(aa + b)^*$ Ans: M_8
(f) a^*b^* Ans: M_6
(g) $(a + b)^*$ Ans: M_4
(h) $(ab)^*$ Ans: M_5

2. True or False.

(a) T If L is any language, $L + L = L$
(b) T If L is any language, $L \cap L = L$
(c) T If L is any language, $\{\lambda\} \in L^*$.
3. Let \(L_1 = \{a, ab\} \) and \(L_2 = \{a, ba\} \). How many strings are there in the language \(L_1L_2 \)? Ans: Three.
\(L_1L_2 = \{aa, aba, abba\} \)

4. True or False. These are harder.

(a) T Any language consisting of all decimal numerals of an arithmetic sequence (for example: \(\{5, 13, 21, 29, \ldots\} \)) is regular.

(b) T Let \(L \) be a regular binary language. Let \(L' \) be the language of all strings obtained from members of \(L \) by substituting \(ab \) for 0 and \(c \) for 1. Then \(L' \) must be regular. For example, if \(L = \{0, 10, 10011\} \) then \(L' = \{ab, cab, cababcc\} \).

5. Any NFA with \(n \) states is equivalent to some DFA with at most \(2^n \) states, counting the dead state.

Draw a DFA equivalent to the following three state NFA. It is not necessary to draw the dead state.