# Parallel Computations: Nick's Class

An algorithm is in class  $\mathcal{NC}$  (Nick Pippenger's Class) if it runs in  $O(\log^{O(1)})$  time using  $O(n^{O(1)})$  processors. We discuss  $\mathcal{NC}$  algorithms for a number of problems of practical importance, such as addition of *n*-bit binary numerals, and the regular language membership problem.

## **Dynamic Programing**

In general, dynamic programming is polynomial time, and some DP problems such as CVP are known to be  $\mathcal{P}$ -complete. In this manuscript we concentrate on  $\mathcal{NC}$  dynamic programming.

**Linear Dynamic Programming** Our general problem is that we are given a linear array of data of length n and a linear dynamic program with those data as input.

Here is our model. We are given an array of inputs  $x_1, \ldots x_n$  and  $s_0$ , and a dynamic program  $\mathcal{D}$  with outputs  $s_1, s_2 \ldots s_n$ , where For each  $i \in \{1 \ldots n\}$ ,  $\mathcal{D}$  computes  $s_i$ , using as inputs only  $s_{i-1}$  and  $x_i$ , time  $t_i$ . We write  $s_i = \mathcal{D}(s_{i-1,x_i})$  The time for  $\mathcal{D}$  to compute all outputs is  $\sum_{i=1}^n t_i$ . In each of our examples,  $t_i$  is a polynomial function of n, hence  $\mathcal{D}$  is  $\mathcal{P}$ -TIME.

Here are some examples.

- 1. Find the sum, or product, of an array of numbers.
- 2. Find the maximum (or minimum) of an array of numbers, or members of some ordered set.
- 3. Compute the product of an array of matrices.
- 4. Compute the sum (or difference) of binary integers, each represented as an array of bits, or whether an integer u is less than an integer v.
- 5. Given a language  $L \subset \Sigma^*$  and an NFA which accepts L, deterine whether a string  $w \in \Sigma^*$ , which we think of as an array of elements of  $\Sigma$ , is a member of L.
- 6. # is an associative operation on a set X, (*i.e.*, (X, #) is a semigroup)  $x_i \in X$ , and

$$s_i = \#_{j=1}^i x_i$$

We use a "tournament" paradigm for  $\mathcal{D}$ . Here are some examples.

### Sum of Integers

### Deciding a Regular Language

Let L be a regular language over an alphabet  $\Sigma$ , accepted by

an NFA  $M = (\Sigma, Q, \Delta, q_0, F)$ . Recall  $\Delta : \Sigma \times Q \to 2^Q$ . Let k = |Q|. For simplicity, we do not allow  $\lambda$ -transitions, There is no loss of generality, since  $\lambda$ -transitions can always be removed without increasing the number of states.

Let  $w \in \Sigma^*$ , a string of *n* symbols of  $\Sigma$ . Let  $x_i = w_i$ , be the *i*<sup>th</sup> symbol of *w*. We let *S* be the set of logical vectors of length *k*, Let  $s_0 = (1, 0, ..., 0)$ , the vector with 1 (true) in position 0 and all other terms 0 (false), indicating that after 0 steps of a computation, the state of *M* must be  $q_0$ . In general,  $s_t$  is true in position *i* if and only if it is possible for the state of *M* to be  $q_i$  after *t* steps of the computation, that is, reading the first *t* symbols of *w*. The computation accepts *w* if and only if, for some

 $q_j \in F$ , position j of  $s_n$  is 1.

#### **Logical Matrices**

A logical matrix is a matrix whose entries are of Boolean type. We write 1 for true and 0 for false. Matrix addition and multiplication is defined in the usual manner for logical matrices, except that disjunction replaces addition and conjunction replaces multiplication.

For example,  $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ 

For each  $a \in \Sigma$  we define a  $k \times k$  logical matrix  $T_a$ . The rows and columns of  $T_a$  are indexed from 0 to k - 1. For  $0 \le i, j < k$ :

$$T_a[i,j] = \begin{cases} 1 \text{ if } q_j \in \Delta(a,q_i) \\ 0 \text{ otherwise} \end{cases}$$

Finally,  $\mathcal{D}$  is computed using transition matrices: if  $w_i = a \in \Sigma$ , then  $s_{i-1}T_a = s_i$ .

The definition of a transition matrix can be extended to all strings over  $\Sigma$ , by the rule that  $T_{uv} =$  $T_u T_v$  for any strings  $u, v \in \Sigma^*$ . Thus  $T_w = T_{w_1} T_{w_2} \cdots T_{w_n}$ , and  $s_0 T_w = s_n$ , hence  $w \in L$ .

#### Example

[0110]

0000

0000

L0001

 $T_a$ 

Let  $\Sigma = \{a, b, c\}$  and L = L(M), where M is the following NFA. Let w = acacabba.

We compute transition matrices of elementary strings, then copy to the 8 leaves of our computation tree. Each matrix in rows 2–4 is the product of the two above it. Then  $s_0 T_w = s_n = (0 \ 0 \ 0 \ 1)$  and  $q_3 \in F$ .



L0 0 0 0.  $T_{acacabba} = T_w$ 

#### Adding Binary Numerals

In this example, we finally use an unconvential semigroup, which not commutative. Let  $X = \{0, 1, 2\}$ We will add binary numerals of length n for integers u and v. let u[i] and v[i] be the *i*th binary digits of u and v; that is,  $u = \sum_{i=0}^{n} 2^{i}$ . By convention we write those digits from right to left. Using the standard "ripple" algorithm for addition. Let  $w = u + v \mod 2^{n}$ . The ripple algorithm computes w as follows:

 $c_{-1} = 0$ for *i* from 1 to n - 1 $x_i = u[i] + v[i]$  $w_i = (x_2 + c_{i-1}) \mod 2$  $c_i = \lfloor x_2 + c_{i-1} \rfloor$ 

Let  $C = \{0, 1\}$  the We think of each  $x \in X$ as a function  $x : C \to C$ , making a carry bit to a later carry bit. In fact,  $x_i$  maps  $c_{i-1}$ to  $c_i$ . and let # be the operation defined by the following table:

| 0 # 0 = 0 | 0#1 = 0 | 0#2 = 0 |
|-----------|---------|---------|
| 1#0 = 0   | 1#1 = 1 | 1#2 = 2 |
| 2#0 = 2   | 2#1 = 2 | 2#2 = 2 |

The operation # composes those functions. For example  $x_7 \# x_6 \# x_5 \# x_4$  maps  $c_3$  to  $c_7$ .

| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | u |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | v |

| 0 | 1   | 1 | 1 | 1   | 1 | 2   | 0 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | X |
|---|-----|---|---|-----|---|-----|---|---|---|---|---|---|---|---|---|---|
| ( | 0 1 |   | ] | 1 2 |   | 0 2 |   | 1 |   | 1 |   |   |   |   |   |   |
|   | 0 2 |   |   |     |   |     | 0 |   |   |   |   |   |   |   |   |   |
| 0 |     |   |   |     |   |     |   | 0 |   |   |   |   |   |   |   |   |
| 0 |     |   |   |     |   |     |   |   |   |   |   |   |   |   |   |   |

