
Parallel Computations: Nick’s Class

An algorithm is in class NC (Nick Pippenger’s Class) if it runs in O(logO(1)) time using O(nO(1))
processors. We discuss NC algorithms for a number of problems of practical importance, such as
addition of n-bit binary numerals, and the regular language membership problem.

Dynamic Progrmming

In general, dynamic programming is polynomial time, and some DP problems such as CVP are
known to be P-complete. In this manuscript we concentrate on NC dynamic programming.

Linear Dynamic Programming Our general problem is that we are given a linear array of data
of length n and a linear dynamic program with those data as input.

Here is our model. We are given an array of inputs x1, . . . xn and s0, and a dynamic program D
with outputs s1, s2 . . . sn, where For each i ∈ {1 . . . n}, D computes si, using as inputs only si−1 and
xi, time ti. We write si = D(si−1,xi

The time for D to compute all outputs is
∑n

i=1
ti. In each of

our examples, ti is a polynomial function of n, hence D is P–time.

Here are some examples.

1. Find the sum, or product, of an array of numbers.

2. Find the maximum (or minimum) of an array of numbers, or members of some ordered set.

3. Compute the product of an array of matrices.

4. Compute the sum (or difference) of binary integers, each represented as an array of bits, or
whether an integer u is less than an integer v.

5. Given a language L ⊂ Σ∗ and an NFA which accepts L, deterine whether a string w ∈ Σ∗,
which we think of as an array of elements of Σ, is a member of L.

6. # is an associative operation on a set X, (i.e.,, (X,#) is a semigroup) xi ∈ X, and

si =#
i

j=1
xi

We use a “tournament” paradigm for D. Here are some examples.

1

Sum of Integers

6 −3 5 1 −8 2 0 7 −1 5 4 −3 −6 7 −8 1

3 6 −6 7 4 1 1 −7

9 1 5 −6

10 −1

9

Deciding a Regular Language

Let L be a regular language over an alphabet Σ, accepted by

an NFA M = (Σ, Q,∆, q0, F). Recall ∆ : Σ × Q → 2Q. Let k = |Q|. For simplicity, we do not
allow λ-transitions, There is no loss of generality, since λ-transtions can always be removed without
increasing the number of states.

Let w ∈ Σ∗, a string of n symbols of Σ. Let xi = wi, be the ith symbol of w. We let S be the set
of logical vectors of length k, Let s0 = (1, 0, . . . 0), the vector with 1 (true) in position 0 and all
other terms 0 (false), indicating that after 0 steps of a computation, the state of M must be q0. In
general, st is true in position i if and only if it is possible for the state of M to be qi after t steps of
the computation, that is, reading the first t symbols of w. The computation accepts w if and only
if, for some

qj ∈ F , position j of sn is 1.

Logical Matrices

A logical matrix is a matrix whose entries are of Boolean type. We write 1 for true and 0 for false.
Matrix addition and multiplication is defined in the usual manner for logical matrices, except that
disjunction replaces addition and conjunction replaces multiplication.

For example,

0 1 1
0 0 1
1 0 0

1 0 0
1 1 0
1 0 0

 =

1 1 0
1 0 0
1 0 0

For each a ∈ Σ we define a k × k logical matrix Ta. The rows and columns of Ta are indexed from
0 to k − 1. For 0 ≤ i, j < k:

Ta[i, j] =

{

1 if qj ∈ ∆(a, qi)
0 otherwise

Finally, D is computed using transition matrices: if wi = a ∈ Σ, then si−1Ta = si.

2

The definition of a transition matrix can be extended to all strings over Σ, by the rule that Tuv =
TuTv for any strings u, v ∈ Σ∗. Thus Tw = Tw1Tw2 · · ·Twn

, and s0Tw = sn, hence w ∈ L.

Example

Let Σ = {a, b, c} and L = L(M),
whereM is the followinhg NFA. Let
w = acacabba.

We compute transition matrices of
elementary strings, then copy to the
8 leaves of our computation tree.
Each matrix in rows 2–4 is the prod-
uct of the two above it. Then
s0Tw = sn = (0 0 0 1) and q3 ∈ F .

1

3

0

2a

b

a,b

a

b

c

c

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Tλ

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

Ta

0 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

Tb

0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0

Tc

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

0 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

Ta Tc Ta Tc Ta Tb Tb Ta

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

Tac Tac Tab Tba

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

Tacac Tabba

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

Tacacabba = Tw

3

Adding Binary Numerals

In this example, we finally use an unconvential semigroup, which not commutative. LetX = {0, 1, 2}
We will add binary numerals of length n for integers u and v. let u[i] and v[i] be the ith binary
digits of u and v; that is, u =

∑n

i=0
2i. By convention we write those digits from right to left.

Using the standard “ripple” algorithm for addition. Let w = u + v mod 2n. The ripple algorithm
computes w as follows:

c
−1 = 0
for i from 1 to n− 1

xi = u[i] + v[i]
wi = (x2 + ci−1) mod 2
ci = ⌊x2 + ci−1⌋

Let C = {0, 1} the We think of each x ∈ X

as a function x : C → C, making a carry
bit to a later carry bit. In fact, xi maps ci−1

to ci. and let # be the operation defined
by the following table:

0#0 = 0 0#1 = 0 0#2 = 0
1#0 = 0 1#1 = 1 1#2 = 2
2#0 = 2 2#1 = 2 2#2 = 2

The operation # composes those functions.
For example x7#x6#x5#x4 maps c3 to c7.

1 1 1 0 1 0 2 1 1 1 10 1

0 1 0 2 1

0 2 0

0

1

0

1

1

2

21

1

0

011
000

0
11

1
1
10

0
0
1

0
01

1
0
100

0 1
11

0
0
0

u
v1

c

x

0

0

2

21

1111120002222220

00 0 0 0 0 0100 1 1 1 1 1 1

1

1

11

1

11

12

10 2

0

0

02

1 2 0

021

1 1 2 0

0

0

1 0 0 0 0 0 1 0 1 1 1 1 1100

carry

u+v

000001001 1 011 10 1 carry
10

0
1 1 0 0 1 1 0 0 0 1 0 1 1 0

0 0 1 1 0 1 0 1 0 1 1 0 0 1 0
u
v

4

