
Regular Languages

Alphabets

An alphabet is a finite set of symbols . There is no definition of symbol. Alphabets used in this course

include:

The alphabet of all ASCII symbols.

The Roman alphabet: upper case, lower case, or both.

The decimal alphabet: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The binary alphabet: {0, 1}.

The unary alphabet: {1}.

Small subsets of the Roman alphabet, such as {a, b}.

Strings

A string is a finite sequence of symbols over some alphabet. For example, if Σ = {a, b, c}, then a, b,

aba, abccaa, are strings of length 1, 3, or 6 over {a, b, c}. The empty string, denoted λ (or ǫ) has length

zero and consists of no symbols.

We write Σ∗ to mean the set of all strings over the alphabet Σ. Σ∗, which is countably infinite. For any

string w ∈ Σ∗, we let |w| be the length of w.

The binary alphabet is of particular importance in computer science. We use the term binary string to

mean any string over the binary alphabet.

Languages

A language is defined to be a set of strings over a particular alphabet. If L is a language over Σ, then

L ⊆ Σ∗.

There is no definition of symbol, and thus anything can be a symbol. The language of DNA strings is

over the alphabet consisting of the four nucleotides: adenine, thymine, guanine, and cytosine, usually

abbreviated as A, T, G, and C.

Example. A programming language is a set of programs , each of which is a string over the alphabet

consisting of all symbols used in that language. including blank and end-of-line.

Numerals and Numbers

We distinguish between a number and a numeral. A number is an abstract object which has no physical

existence. A numeral is something (usually a string) which denotes a number. If n is a number, we write

〈n〉 to mean a numeral which denotes n.

1

Problems and Languages

We are primarily interested in infinite problems, that is, problems which have infinitely many instances.

For example, “What is 2+3?” is an instance of the addition problem.

A 0/1 problem is any problem where the answer for each instance is either 0 (false) or 1 (true). For

example, an instance of the primality problem is a numeral 〈n〉, and the answer is 1 (true) if n is prime, 0

(false) otherwise.

A problems that is not 0/1 could have a 0/1 version. For example, instead of asking for the prime factors

of n, we could ask whether n has a prime factor smaller than a given other number a.

Languages and 0/1 problems are essentially the same thing. For any language L, there is a membership

problem. If L ⊆ Σ∗, every string over Σ is an instance of the membership problem for L. For the instance

w ∈ Σ∗, the answer is 1 if w ∈ L and 0 if w /∈ L. Many language classes, such as P-time, are defined by

the hardness of their membership problems. A language is said to be “hard” or “easy” if its membership

problem is hard or easy.1

Machines

A machine in this course is an abstract machine, which is a mathematical object. (The computer on your

desk is a physical machine.) A computation of a machine is a sequence of steps. A machine has an initial

configuration, also called the instanteous description, or id. There is an initial id, and at each step, the

id changes, according to the rules of the machine. A computation can be infinite, or end with a halt, or

the machine may hang, meaning there is no legal next step. Each id can be desribed by a string. This

string must encode everyihing needed for the computation, such as the machine’s current state, contents

of its memory, unread input, and written output. A string is necessarily finite, but during an infinite

computation, the id could increase its length without limit.

Accept and Decide

We say that a non-deterministic machine M accepts a string w if, given the input w, M may halt in an

accepting state. We say language L if M accepts every w ∈ L and does not accept any string not in L.

We say that M decides L if, given an input string w, M halts in an accepting state if w ∈ L and halts in

a rejecting state if w /∈ L.

Deterministic Finite Automata

A machine M is called a finite automaton (FA) if its id consists of one of a finite set of states together

with its current unread input. A deterministic finite automaton (DFA) M has a finite set of states Q, one

of which (usually called q0) is the start state. There is a subset F ⊆ Q of final states. An input for a DFA

is a string w ∈ Σ∗, where Σ is called the input alphabet. M also has a transition function δ : Q×Σ → Q.

Formally, M is the quintuple (Q,Σ, δ, q0, F). An id of M is an ordered pair (q, u), where q ∈ Q is the

1‘Hard” and “easy” are relative terms, like “large” and “small,” or “warm” and “cool.” A small planet is larger than a

large animal.

2

current state and u ∈ Σ∗ is the remaining (unread) input. The initial id of M is (q0, w), where w is the

input string. We can generalize the transition function to δ : Q× Σ∗ → Q by recursion:

δ(q, λ) = q, for q ∈ Q.

δ(q, wa) = δ(δ(q, w), a), for q ∈ Q, w ∈ Σ∗, a ∈ Σ.

Steps of M . The number of steps a DFA M takes during a computation is equal to the length of the

input string. During each step, M reads the first symbol of the remaining input, then changes its state. If

q ∈ Q is the current state and a is the next symbol of input, the state changes to δ(q, a)). If the last state

is final, w is accepted, otherwise w is rejected. If a DFA M accepts a language L, it is also true that M

decides L, since it always halts. A language is defined to be regular if it is accepted by some DFA

Example

Let M be the DFA where

Σ = {a, b}, Q = {q0, q1, q2},

F = {q2}, and δ is defined by

the transition table given in

Table 1, and illustrated as a

state diagram in Figure 2

δ a b

q0 q0 q1

q1 q2 q1

q2 q0 q1

Table 1

0

2

1

a

b

ba

b

a

Figure 2: State Diagram of M

Figure 3 shows a computation of M which accepts the string abba, while Figure 4 shows a computation of

M which rejects the string abab.

10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a10

2
a

b

ba

b

a

(2,)λ(0,abba) (0,bba) (1,ba) (1,a)

Figure 3: Computation of M accepting abba. For simplicity, the states are labeled

0, 1, 2 instead of q0, q1, q2. The final state is doubly circled. The figures show

the sequence of ids. The current state is indicated in blue, and the current id is

underneath the figure. Note that the last state is final.

10

2
a

b

ba

b

a 10

2
a

b

ba

b

a 10

2
a

b

ba

b

a10

2
a

b

ba

b

a 10

2
a

b

ba

b

a

(0,abab) (0,bab) (1,ab) (2,b) (1,)λ

Figure 4: Computation of M rejecting abab. Note that the last state is not final.

3

