Name:___

No books, notes, scratch paper, or calculators. Use pen or pencil, any color. Use the rest of this page and the backs of the pages for scratch paper. If you need more scratch paper, it will be provided.

Do not leave the room until you have seriously attempted every problem!

Think! Think! Think! In some cases, the problem was not explicitly mentioned in class or homework, but follows easily from something that was mentioned. No problem is beyond the scope of a student who learned the material.

Definitions you will need. We say that a set \(S \) of integers is \emph{recursive} if the set of binary numerals for members of \(S \) is recursive, while we say that \(S \) is \emph{recursively enumerable} if the set of binary numerals for members of \(S \) is recursively enumerable.

1. True/False/Open

 (i) ______ Every subset of a regular language is decidable.

 (ii) ______ The intersection of any two \(\mathcal{NP} \) languages is \(\mathcal{NP} \).

 (iii) ______ Every language accepted by a non-deterministic machine is accepted by some deterministic machine.

 (iv) ______ \(\mathcal{NC} = \mathcal{P} \).

 (v) ______ \(\mathcal{P} = \mathcal{NP} \).

 (vi) ______ The Boolean Circuit Problem (CVP) is in \(\mathcal{NC} \).

 (vii) ______ The independent set problem is \(\mathcal{P}\)-time.

 (viii) ______ IF \(L_1 \) is undecidable and there is a recursive reduction of \(L_1 \) to \(L_2 \), then \(L_2 \) must be undecidable.

 (ix) ______ If \(S \) is a recursive set of positive integers, then \(\sum_{n \in S} 2^{-n} \) must be a recursive real number.

 (x) ______ Multiplication of matrices with binary numeral entries is \(\mathcal{NC} \).

 (xi) ______ Equivalence of regular expressions is decidable.

 (xii) ______ Every recursively enumerable language is generated by a general grammar.
(xiii) _______ Equivalence of context-free grammars is co-RE.

(xiv) _______ The language consisting of all fractions whose values are less than the natural logarithm of 5.0 is recursive.

(xv) _______ If \(L \) is in \(\mathcal{RE} \) and also co-\(\mathcal{RE} \), then \(L \) must be decidable.

(xvi) _______ For every real number \(x \), there exists a machine that runs forever and outputs the string of decimal digits of \(x \).

(xvii) _______ The language of all true mathematical statements is recursively enumerable.

(xviii) _______ Every sliding block problem is \(\mathcal{P} \)-SPACE.

(xix) _______ There are uncountably many co-\(\mathcal{RE} \) languages.

(xx) _______ If \(L \) is any \(\mathcal{P} \)-TIME language, there is an \(\mathcal{NC} \) reduction of \(L \) to CVP, the Boolean circuit problem.

(xxi) _______ There is a polynomial time algorithm for checking whether an integer is prime.

(xxii) _______ Every finite language is regular.

(xxiii) _______ If \(L \) is a \(\mathcal{P} \)-TIME language, there is a Turing Machine which decides \(L \) in polynomial time.

(xxiv) _______ If anyone ever finds a polynomial time algorithm for any \(\mathcal{NP} \)-complete language, then \(\mathcal{P} = \mathcal{NP} \).

(xxv) _______ RSA encryption is believed to be secure because it is believed that the factorization problem for integers is very hard.

(xxvi) _______ If \(S \) is a recursively enumerable set of positive integers, then \(\sum_{n \in S} 2^{-n} \) must be a recursive real number.

2. Every language, or problem, falls into exactly one of these categories. For each of the languages, write a letter indicating the correct category. [5 points each]

A Known to be \(\mathcal{NC} \).
B Known to be \(\mathcal{P} \)-TIME, but not known to be \(\mathcal{NC} \).
C Known to be \(\mathcal{NP} \), but not known to be \(\mathcal{P} \)-TIME and not known to be \(\mathcal{NP} \)-complete.
D Known to be \(\mathcal{NP} \)-complete.
E Known to be \(\mathcal{P} \)-SPACE but not known to be \(\mathcal{NP} \).
F Known to be decidable, but not known to be \(\mathcal{P} \)-SPACE.
G \(\mathcal{RE} \) but not decidable.
H co-\(\mathcal{RE} \) but not decidable.
I Neither \(\mathcal{RE} \) nor co-\(\mathcal{RE} \).

(a) _______ All C++ programs which do not halt if given themselves as input.

(b) _______ All base 10 numerals for perfect squares.
(c) The Dyck language.

(d) \(\{ G \mid L(G) \text{ is the Dyck language} \} \)

(e) All positions of RUSH HOUR from which it is possible to win.

(f) The Jigsaw problem. (That is, given a finite set of two-dimensional pieces, can they be assembled into a rectangle, with no overlap and no spaces.)

(g) Factorization of binary numerals.

3. [20 points] Find a DFA equivalent to the NFA shown in Figure 1.

![Figure 1: NFA for problems 3 and 4](image)

4. [20 points] Give a regular grammar for the language accepted by the machine in Figure 1.

5. [20 points] Give a regular expression for the language accepted by the machine in Figure 2.

![Figure 2: NFA for problem 5](image)
6. Which class of languages does each of these machine classes accept? [5 points each]

(a) Deterministic finite automata. __

(b) Non-deterministic finite automata. __

(c) Push-down automata. __

(d) Turing Machines. ___

7. [20 points]
Let \(L = \{ w \in \{a, b\}^* : \#_a(w) = \#_b(w) \} \), that is, each string of \(L \) has equal numbers of each symbol.

Draw a PDA which accepts \(L \).

8. [20 points] The grammar below is an ambiguous CF grammar with start symbol \(E \), and is parsed by the LALR parser whose ACTION and GOTO tables are shown here. The ACTION table is missing actions for the second column, when the next input symbol is the “minus” sign. Fill it in. Remember the C++ precedence of operators. (Hint: the column has seven different actions: s2, s4, r1, r2, r3, r4, and r5, some more than once, and has no blank spaces.)

<table>
<thead>
<tr>
<th>1. (E \rightarrow E - 2)</th>
<th>2. (E \rightarrow - 4)</th>
<th>3. (E \rightarrow E * 6)</th>
<th>4. (E \rightarrow (8 E_9)_{10})</th>
<th>5. (E \rightarrow x_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(-)</td>
<td>(*)</td>
<td>(()</td>
<td>())</td>
</tr>
<tr>
<td>0</td>
<td>s11</td>
<td>s8</td>
<td>$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>s6</td>
<td>halt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s11</td>
<td>s8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s6</td>
<td>r1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>s11</td>
<td>s8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>s11</td>
<td>s8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>s11</td>
<td>s8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>s6</td>
<td>s6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td></td>
</tr>
</tbody>
</table>
9. [20 points] Prove that any decidable language can be enumerated in canonical order by some machine.

10. [20 points] Give a polynomial time reduction of 3-SAT to the independent set problem.
11. [20 points] Prove that the halting problem is undecidable.