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A binary function is defined to be a function F on binary strings such that, for each binary string w, F (w) is

a binary string. (Of course, the strings could be numerals.)

A real number x is defined to be recursive if there is a machine which runs forever writing the decimal

expansion of x.

1. True or False. If the question is currently open, write “O” or “Open.”

(i) F Every subset of a regular language is regular.

Every language is a subset of some regular language.

(ii) O P = NP.

(iii) O P = NC.

(iv) T Every regular language is NC.

(v) T Every context-free language is NC.

(vi) O The Boolean circuit problem is NC

This problem is P–complete, meaning that if it is NC, then P = NC.

(vii) T The complement of any P–time language is P-time.

A machine that decides a P–time language also decides its complement.

(viii) O The complement of any NP language is NP.

If P = NP it is trivially true since the complement of any P problem is P.

(ix) T The complement of any P–space language is P–space.

A machine that decides a P–space language also decides its complement.

(x) T The complement of every recursive language is recursive.

A machine that decides a recursive language also decides its complement.

(xi) F The complement of every recursively enumerable language is recursively enumerable.

(xii) T If a language L is accepted by an NFA M with p states, then p is the pumping length of L.

If w ∈ L, of length at least p, a computation of M with input w must visit some state twice. A

substring of w starting and ending with visits to the same state is a pumpable substring.



(xiii) T Given any unambiguous context-free grammar G and any string w ∈ L(G), there is always a

unique leftmost derivation of w using G.

One of the definitions of ambiguity is that some string has more than one leftmost derivations.

(xiv) F For any deterministic finite automaton, there is always a unique minimal non-deterministic finite

automaton equivalent to it.

Trick question! It’s the converse which is true.

(xv) T The union of any two context-free languages is context-free.

(xvi) F The class of languages accepted by non-deterministic push-down automata is the same as the

class of languages accepted by deterministic push-down automata.

A language of palindromes is accepted by a PDA but not by any DPDA.

(xvii) T Let π be the ratio of the circumference of a circle to its diameter. Then π is recursive.

There is a program that, if run forever, would output the decimal expansion of π.

(xviii) T The Kleene closure of any recursive language is recursive.

Let L ⊆ Σ∗ be recursive, and let w ∈ Σ∗ of length n. Then W has O(n2) substrings. Let L be

the set of all substrings of w which are in L, which we can campute since L is decidable. Then, in

polynomial time, determine whether w is the concatenation of members of L.

(xix) T If P = NP, then all one-way encoding systems are breakable in polynomial time.

If P = NP, there is no one-way function.

(xx) T A language L is in NP if and only if there is a polynomial time reduction of L to SAT.

SAT is NP–complete.

(xxi) T The intersection of any context-free language with any regular language is context-free.

(xxii) F Let L be the set of all strings of the form 〈G1〉〈G2〉 where G1 and G2 are equivalent context-free

grammars. Then L is recursively enumerable.

But it is co-RE .

(xxiii) T If L1 reduces to L2 in polynomial time, and if L2 is NP, and if L1 is NP-complete, then L2

must be NP-complete.

This is the most common way that new NP–complete languages are found.

(xxiv) O The question of whether two regular expressions are equivalent is NP-complete. (Do not guess.

Look it up.)

The problem is –space complete. But it is unknown whether P–space = NP.

(xxv) F The intersection of any two context-free languages is context-free.
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(xxvi) T If L1 reduces to L2 in polynomial time, and if L2 is NP, then L1 must be NP.

(xxvii) T Every language which is accepted by some non-deterministic machine is accepted by some deter-

ministic machine.

But it might take exponentially longer to accept a string.

(xxviii) T The language of all regular expressions over the binary alphabet is a regular language.

Trick question. Impossible since the language of regular expressions has matched parentheses, and

no such language can be regular. In fact, the language of all regular expressions over the binary

alphabet is context-free.

(xxix) F The equivalence problem for C++ programs is recursive.

Machine equivalence is undecidable.

(xxx) F Every function that can be mathematically defined is recursive.

This is somewhat hard to explain. An example is the busy beaver function.

(xxxi) F There is some recursive function F such that β(n) = O(F (n)), where β be the busy beaver

function.

The busy beaver function grows asymptotically faster than any recursive function, as expained on

the Wikipedia page.

(xxxii) T A language is L is NP if and only if there is a polynomial time reduction of L to Boolean

satisfiability.

A basic property of NP–complete languages, in fact, one of the definitions.

(xxxiii) T If there is a recursive reduction of the halting problem to a language L, then L is undecidable.

If L1 can be reduced to L2 by an “easy” function then L2 cannot be “harder” than L1

(xxxiv) F If there is a recursive reduction of a language L to the halting problem, then L is undecidable.

The converse of the previous problem, but an easy language can be easily reduced to a hard language.

(xxxv) T The set of rational numbers is countable.

Every fraction can be thought of as the ordered pair (p,q) where p and q are integers. Since there

are countably many integers, there are countably many such pairs.

(xxxvi) F The set of real numbers is countable.

Cantor’s diagonalization proof shows that there are uncountably many real numbers.

(xxxvii) T The set of recursive real numbers is countable.

The decimal expansion of every recursive real number is written by some machine, and there are

only countably many machines with a given alphabet.
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(xxxviii) F There are countably many binary functions.

Let Σ∗ be the set of all binary strings, which is countably infinite. The set of binary functions is

then (Σ∗)Σ
∗

, which is uncountable.

(xxxix) T There are countably many recursive binary functions.

Each has to be computed by a machine, and there are countably many such machines.

2. Give a problem which is in both NP and co-NP but is not known to be P.

The 0/1 factoring problem over binary numerals. It is not known to be P-time, but is known to be both

NP and co-NP.

3. Give a context-free language whose complement is not context-free.

The complement of the language {anbncn : n ≥ 0}.

4. State the pumping lemma for regular languages.

For any regular langage L

There exists an integer p

Such that for any string w ∈ L of length at least p

There exist string x, y, and z

Such that the following statements hold

1. w = xyz

2. |xy| ≤ p 3. y 6= λ (or |y| ≥ 1)

4. For any integer i ≥ 0, xyiz ∈ L.

5. State the Church-Turing thesis. Why is it important?

Every computation by any machine can be emulated by some Turing machine. This is important because

Turing machines are simple, making it easier to prove that a given computation cannot be done by a

Turing machine, hence not by any machine.

6. For a given instance of an NP problem, a witness, a certificate, and a guide string all have the same

purpose.

Let L be any NP language. There exists a machine V (the verifier) and there exists an integer k such

that

(a) For any w ∈ L there is a string c of length at most nk, where n = |w|, such that V accepts the

string w, c

(b) If w /∈ L and c is any string, V does not accept w, c.

The string c could be called either a “certificate” (certifying that w ∈ L) or a “witness.”

Alternatively, if L is accepted by a non-deterministic machine M is polynomial time, then a guide string

for w ∈ L is a string of instructions which tells M , with input w, what to do at each step where there is

a choice, in order to reach a final state.
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In all three cases, we mean a string of polynomial length which allows a machine to verify that w ∈ L.

For example, for some Boolean expression, a witness would be an assignment of the variables which

satisfies the expression.

7. Give a polynomial time reduction of the subset sum problem to the partition problem.

If X = (x1, x2, . . . xn,K) is an instance of the subset sum problem, let S =
∑

n

i=1
. Then Y =

(x1, x2, . . . xn, S + 1,= (x1, x2, . . . xn, S + 1,K − S + 1) is an instance of the partition problem which has

a solution if and only if X has a solution.

8. On the internet you can find many instances of RUSH HOUR together with solutions. All the solutions

given are short. Is it true that every solvable instance of RUSH HOUR has a solution of polynomial

length? Explain your answer.

I did not grade this problem, since I had not gone over P–space enough. A similar problem will be on

the next examination, though.

9. Prove that every decidable language is can be enumerated by some machine. In canonical order.

Let w1, w2, . . . be the canonical enumeration of Σ∗. The following program enumerates a deciable language

L ⊆ Σ∗ in canonical order:

For each i from 1 to ∞

If(wi ∈ L)

write wi

It is important that L be decidable, else the program could hang at the if statement, being unable to

decide the condition.

10. Prove that every language which can be enumerated in canonical order by some machine is recursive.

If L is finite, we are done, since a finite language is recursive.

Otherwise, suppose some machine enumerates L in canonical order: w1, w2, . . .. The following program

decides L.

Read w.

For i = 1 to ∞

If(w = wi)

Write ”Yes” and halt

else if (w < wi) (in canonical order)

Write ”No” and halt
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11. Prove that every language which can be enumerated by any machine is accepted by some machine.

Suppose some machine enumerates L as w1, w2, . . ., not necessarily in canonical order. The following

program accepts L.

Read w

For i = 1 to ∞

If(w = wi)

Write “Yes” and halt.

12. Prove that every language which is accepted by any machine can be enumerated by some machine.

Suppose L ⊆ Σ∗ is accepted by a deterministic machine M . The following program enumerates L, but

in any order.

For t = 1to∞

For i = 1 to t

If M accepts wi within its first t steps

Write wi
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