University of Nevada, Las Vegas Computer Science 456/656 Fall 2024 Assignment 2: Due Friday September 13, 2024, 11:59 PM

Name	e:	

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Zachary Edwards, telling you how to turn in the assignment.

1. Identify which machine accepts the language defined by each regular expression.

(i)
$$a^* + b^*$$

(v)
$$a(aa + b)^*$$

(ii)
$$\lambda$$

(vi)
$$a^*b^*$$

(iii)
$$a^*$$

(vii)
$$(a+b)^*$$

2. True or False.

- (i) _____ If L is any language, L + L = L
- (ii) _____ If L is any language, $L \cap L = L$
- (iii) _____ If L is any language, $\{\lambda\} \in L^*$.
- 4. True or False. These are harder.
 - (a) ______ Any language consisting of all decimal numerals of an arithmetic sequence (for example: $L = \{\langle 5+8n \rangle : n \geq 0\} = \{5,13,21,29,37,45\ldots\}$) is regular. Note: the members of L are numerals, not numbers.

- (b) ______ Let L_1 be a regular binary language. Let L_2 be the language of all strings obtained from members of L_1 by substituting ab for 0 and c for 1. Then L' must be regular. For example, if $L_1 = \{0, 10, 10011\}$ then $L' = \{ab, cab, cababcc\}$.
- 5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw a minimal DFA equivalent to the following three state NFA.

Show your work. Add extra pages if needed.

- 6. The following True/False questions are much harder. I have not given the answers in class, and you may have to really hunt to find them on the internet.
 - (i) _____ DFA equivalence is \mathcal{P} -TIME.
 - (ii) _____ NFA equivalence is $\mathcal{P}\textsc{-time}.$
 - (iii) _____ NFA equivalence is \mathcal{NP} -TIME.
 - (iv) _____ Regular expression equivalence is \mathcal{NP} -TIME.
 - (v) _____ Regular expression equivalence is \mathcal{P} -SPACE.